
C06 – Summation of Series

Chapter C06

Summation of Series

Contents

1 Scope of the Chapter 2

2 Background to the Problems 2
2.1 Discrete Fourier Transforms . 2

2.1.1 Complex transforms . 2
2.1.2 Real transforms . 2
2.1.3 Real symmetric transforms . 4
2.1.4 Fourier integral transforms . 5
2.1.5 Convolutions and correlations . 5
2.1.6 Applications to solving partial differential equations (PDEs) 5

2.2 Inverse Laplace Transforms . 6
2.3 Direct Summation of Orthogonal Series . 6
2.4 Acceleration of Convergence . 6

3 Recommendations on Choice and Use of Available Routines 7
3.1 One-dimensional Fourier Transforms . 7
3.2 Half- and Quarter-wave Transforms . 8
3.3 Application to Elliptic Partial Differential Equations . 8
3.4 Multi-dimensional Fourier Transforms . 8
3.5 Convolution and Correlation . 9
3.6 Inverse Laplace Transforms . 9
3.7 Direct Summation of Orthogonal Series . 9
3.8 Acceleration of Convergence . 9

4 Index 9

5 Routines Withdrawn or Scheduled for Withdrawal 10

6 References 10

[NP3390/19/pdf] C06.1

Introduction – C06 C06 – Summation of Series

1 Scope of the Chapter

This chapter is concerned with the following tasks.

(a) Calculating the discrete Fourier transform of a sequence of real or complex data values.
(b) Calculating the discrete convolution or the discrete correlation of two sequences of real or complex

data values using discrete Fourier transforms.
(c) Calculating the inverse Laplace transform of a user-supplied function.
(d) Direct summation of orthogonal series.
(e) Acceleration of convergence of a sequence of real values.

2 Background to the Problems
2.1 Discrete Fourier Transforms
2.1.1 Complex transforms

Most of the routines in this chapter calculate the finite discrete Fourier transform (DFT) of a sequence
of n complex numbers zj , for j = 0, 1, . . . , n− 1. The transform is defined by

ẑk =
1√
n

n−1∑
j=0

zj exp
(
−i2πjk

n

)
(1)

for k = 0, 1, . . . , n− 1. Note that equation (1) makes sense for all integral k and with this extension ẑk

is periodic with period n, i.e., ẑk = ẑk±n, and in particular ẑ−k = ẑn−k. Note also that the scale-factor
of 1√

n
may be omitted in the definition of the DFT, and replaced by 1

n in the definition of the inverse.

If we write zj = xj + iyj and ẑk = ak + ibk, then the definition of ẑk may be written in terms of sines
and cosines as

ak =
1√
n

n−1∑
j=0

(
xj cos

(
2πjk
n

)
+ yj sin

(
2πjk
n

))

bk =
1√
n

n−1∑
j=0

(
yj cos

(
2πjk
n

)
− xj sin

(
2πjk
n

))
.

The original data values zj may conversely be recovered from the transform ẑk by an inverse discrete
Fourier transform:

zj =
1√
n

n−1∑
k=0

ẑk exp
(
+i
2πjk
n

)
(2)

for j = 0, 1, . . . , n− 1. If we take the complex conjugate of (2), we find that the sequence z̄j is the DFT
of the sequence ¯̂zk. Hence the inverse DFT of the sequence ẑk may be obtained by taking the complex
conjugates of the ẑk; performing a DFT; and taking the complex conjugates of the result. (Note that the
terms forward transform and backward transform are also used to mean the direct and inverse transforms
respectively.)

The definition (1) of a one-dimensional transform can easily be extended to multi-dimensional transforms.
For example, in two dimensions we have

ẑk1k2
=

1
√
n1n2

n1−1∑
j1=0

n2−1∑
j2=0

zj1j2
exp

(
−i2πj1k1

n1

)
exp

(
−i2πj2k2

n2

)
.

Note. Definitions of the discrete Fourier transform vary. Sometimes (2) is used as the definition of the
DFT, and (1) as the definition of the inverse.

2.1.2 Real transforms

If the original sequence is purely real valued, i.e., zj = xj , then

ẑk = ak + ibk =
1√
n

n−1∑
j=0

xj exp
(
−i2πjk

n

)

C06.2 [NP3390/19/pdf]

C06 – Summation of Series Introduction – C06

and ẑn−k is the complex conjugate of ẑk. Thus the DFT of a real sequence is a particular type of complex
sequence, called a Hermitian sequence, or half-complex or conjugate symmetric, with the properties

an−k = ak bn−k = −bk b0 = 0

and, if n is even, bn/2 = 0.

Thus a Hermitian sequence of n complex data values can be represented by only n, rather than 2n,
independent real values. This can obviously lead to economies in storage, with two schemes being used
in this chapter. In the first scheme, which will be referred to as the real storage format for Hermitian
sequences, the real parts ak for 0 ≤ k ≤ n/2 are stored in normal order in the first n/2 + 1 locations
of an array X of length n; the corresponding non-zero imaginary parts are stored in reverse order in the
remaining locations of X. To clarify, if X is declared with bounds (0:n− 1) in your calling (sub)program,
the following two tables illustrate the storage of the real and imaginary parts of ẑk for the two cases: n
even and n odd.

If n is even then the sequence has two purely real elements and is stored as follows:

Index of X 0 1 2 . . . n/2 . . . n− 2 n− 1

Sequence a0 a1 + ıb1 a2 + ıb2 . . . an/2 . . . a2 − ıb2 a1 − ıb1

Stored values a0 a1 a2 . . . an/2 . . . b2 b1

X(k) = ak, for k = 0, 1, . . . , n/2, and
X(n− k) = bk, for k = 1, 2, . . . , n/2− 1.

If n is odd then the sequence has one purely real element and, letting n = 2s+ 1, is stored as follows:

Index of X 0 1 2 . . . s s+ 1 . . . n− 2 n− 1

Sequence a0 a1 + ıb1 a2 + ıb2 . . . as + ıbs as − ıbs . . . a2 − ıb2 a1 − ıb1

Stored values a0 a1 a2 . . . as bs . . . b2 b1

X(k) = ak, for k = 0, 1, . . . , s, and
X(n− k) = bk, for k = 1, 2, . . . , s.

The second storage scheme, referred to in this chapter as the complex storage format for Hermitian
sequences, stores the real and imaginary parts ak, bk, for 0 ≤ k ≤ n/2, in consecutive locations of an
array X of length n+2. If X is declared with bounds (0:n+1) in your calling (sub)program, the following
two tables illustrate the storage of the real and imaginary parts of ẑk for the two cases: n even and n
odd.

If n is even then the sequence has two purely real elements and is stored as follows:

Index of X 0 1 2 3 . . . n− 2 n− 1 n n+ 1

Stored values a0 b0 = 0 a1 b1 . . . an/2−1 bn/2−1 an/2 bn/2 = 0

X(2 ∗ k) = ak, for k = 0, 1, . . . , n/2, and
X(2 ∗ k + 1) = bk, for k = 0, 1, . . . , n/2.

[NP3390/19/pdf] C06.3

Introduction – C06 C06 – Summation of Series

If n is odd then the sequence has one purely real element and, letting n = 2s+ 1, is stored as follows:

Index of X 0 1 2 3 . . . n− 2 n− 1 n n+ 1

Stored values a0 b0 = 0 a1 b1 . . . bs−1 as bs 0

X(2 ∗ k) = ak, for k = 0, 1, . . . , s, and
X(2 ∗ k + 1) = bk, for k = 0, 1, . . . , s.

Also, given a Hermitian sequence, the inverse (or backward) discrete transform produces a real sequence.
That is,

xj =
1√
n


a0 + 2

n/2−1∑
k=1

(
ak cos

(
2πjk
n

)
− bk sin

(
2πjk
n

))
+ an/2




where an/2 = 0 if n is odd.

2.1.3 Real symmetric transforms

In many applications the sequence xj will not only be real, but may also possess additional symmetries
which we may exploit to reduce further the computing time and storage requirements. For example, if
the sequence xj is odd, (xj = −xn−j), then the discrete Fourier transform of xj contains only sine terms.
Rather than compute the transform of an odd sequence, we define the sine transform of a real sequence
by

x̂k =

√
2
n

n−1∑
j=1

xj sin
(
πjk

n

)
,

which could have been computed using the Fourier transform of a real odd sequence of length 2n. In
this case the xj are arbitrary, and the symmetry only becomes apparent when the sequence is extended.
Similarly we define the cosine transform of a real sequence by

x̂k =

√
2
n


1
2
x0 +

n−1∑
j=1

xj cos
(
πjk

n

)
+
1
2
(−1)kxn




which could have been computed using the Fourier transform of a real even sequence of length 2n.

In addition to these ‘half-wave’ symmetries described above, sequences arise in practice with ‘quarter-
wave’ symmetries. We define the quarter-wave sine transform by

x̂k =
1√
n


n−1∑

j=1

xj sin
(
πj(2k − 1)

2n

)
+
1
2
(−1)k−1xn




which could have been computed using the Fourier transform of a real sequence of length 4n of the form

(0, x1, . . . , xn, xn−1, . . . , x1, 0,−x1, . . . ,−xn,−xn−1, . . . ,−x1).

Similarly we may define the quarter-wave cosine transform by

x̂k =
1√
n


1
2
x0 +

n−1∑
j=1

xj cos
(
πj(2k − 1)

2n

)


which could have been computed using the Fourier transform of a real sequence of length 4n of the form

(x0, x1, . . . , xn−1, 0,−xn−1, . . . ,−x0,−x1, . . . ,−xn−1, 0, xn−1, . . . , x1).

C06.4 [NP3390/19/pdf]

C06 – Summation of Series Introduction – C06

2.1.4 Fourier integral transforms

The usual application of the discrete Fourier transform is that of obtaining an approximation of the
Fourier integral transform

F (s) =
∫ ∞

−∞
f(t) exp(−i2πst) dt

when f(t) is negligible outside some region (0, c). Dividing the region into n equal intervals we have

F (s) ∼=
c

n

n−1∑
j=0

fj exp(−i2πsjc/n)

and so

Fk
∼=

c

n

n−1∑
j=0

fj exp(−i2πjk/n)

for k = 0, 1, . . . , n− 1, where fj = f(jc/n) and Fk = F (k/c).

Hence the discrete Fourier transform gives an approximation to the Fourier integral transform in the
region s = 0 to s = n/c.

If the function f(t) is defined over some more general interval (a, b), then the integral transform can still
be approximated by the discrete transform provided a shift is applied to move the point a to the origin.

2.1.5 Convolutions and correlations

One of the most important applications of the discrete Fourier transform is to the computation of the
discrete convolution or correlation of two vectors x and y defined (as in Brigham [1]) by

convolution: zk =
n−1∑
j=0

xjyk−j

correlation: wk =
n−1∑
j=0

x̄jyk+j

(Here x and y are assumed to be periodic with period n.)

Under certain circumstances (see Brigham [1]) these can be used as approximations to the convolution
or correlation integrals defined by

z(s) =
∫ ∞

−∞
x(t)y(s− t) dt

and
w(s) =

∫ ∞

−∞
x̄(t)y(s+ t) dt, −∞ < s <∞.

For more general advice on the use of Fourier transforms, see Hamming [5]; more detailed information
on the fast Fourier transform algorithm can be found in Gentleman and Sande [4] and Brigham [1].

2.1.6 Applications to solving partial differential equations (PDEs)

A further application of the fast Fourier transform, and in particular of the Fourier transforms of
symmetric sequences, is in the solution of elliptic PDEs. If an equation is discretised using finite
differences, then it is possible to reduce the problem of solving the resulting large system of linear
equations to that of solving a number of tridiagonal systems of linear equations. This is accomplished
by uncoupling the equations using Fourier transforms, where the nature of the boundary conditions
determines the choice of transforms − see Section 3.3. Full details of the Fourier method for the solution
of PDEs may be found in Swarztrauber [7], [8].

[NP3390/19/pdf] C06.5

Introduction – C06 C06 – Summation of Series

2.2 Inverse Laplace Transforms

Let f(t) be a real function of t, with f(t) = 0 for t < 0, and be piecewise continuous and of exponential
order α, i.e.,

|f(t)| ≤ Meαt

for large t, where α is the minimal such exponent.

The Laplace transform of f(t) is given by

F (s) =
∫ ∞

0

e−stf(t) dt, t > 0

where F (s) is defined for Re(s) > α.

The inverse transform is defined by the Bromwich integral

f(t) =
1
2πi

∫ a+i∞

a−i∞
estF (s) ds, t > 0.

The integration is performed along the line s = a in the complex plane, where a > α. This is equivalent
to saying that the line s = a lies to the right of all singularities of F (s). For this reason, the value of α is
crucial to the correct evaluation of the inverse. It is not essential to know α exactly, but an upper bound
must be known.

The problem of determining an inverse Laplace transform may be classified according to whether (a) F (s)
is known for real values only, or (b) F (s) is known in functional form and can therefore be calculated
for complex values of s. Problem (a) is very ill-defined and no routines are provided. Two methods are
provided for problem (b).

2.3 Direct Summation of Orthogonal Series

For any series of functions φi which satisfy a recurrence

φr+1(x) + αr(x)φr(x) + βr(x)φr−1(x) = 0

the sum
n∑

r=0

arφr(x)

is given by
n∑

r=0

arφr(x) = b0(x)φ0(x) + b1(x)(φ1(x) + α0(x)φ0(x))

where
br(x) + αr(x)br+1(x) + βr+1(x)br+2(x) = arbn+1(x) = bn+2(x) = 0.

This may be used to compute the sum of the series. For further reading, see Hamming [5].

2.4 Acceleration of Convergence

This device has applications in a large number of fields, such as summation of series, calculation of
integrals with oscillatory integrands (including, for example, Hankel transforms), and root-finding. The
mathematical description is as follows. Given a sequence of values {sn}, n = m,m+1,m+2, . . . ,m+2l
then, except in certain singular cases, parameters, a, bi, ci may be determined such that

sn = a+
l∑

i=1

bic
n
i .

If the sequence {sn} converges, then a may be taken as an estimate of the limit. The method will also
find a pseudo-limit of certain divergent sequences − see Shanks [6] for details.

To use the method to sum a series, the terms sn of the sequence should be the partial sums of the

series, e.g.,, sn =
n∑

k=1

tk, where tk is the kth term of the series. The algorithm can also be used to some

C06.6 [NP3390/19/pdf]

C06 – Summation of Series Introduction – C06

advantage to evaluate integrals with oscillatory integrands; one approach is to write the integral (in this
case over a semi-infinite interval) as

∫ ∞

0

f(x) dx =
∫ a1

0

f(x) dx+
∫ a2

a1

f(x) dx+
∫ a3

a2

f(x) dx+ . . .

and to consider the sequence of values

s1 =
∫ a1

0

f(x) dx; s2 =
∫ a2

0

f(x) dx = s1 +
∫ a2

a1

f(x) dx, etc,

where the integrals are evaluated using standard quadrature methods. In choosing the values of the ak,
it is worth bearing in mind that C06BAF converges much more rapidly for sequences whose values
oscillate about a limit. The ak should thus be chosen to be (close to) the zeros of f(x), so that
successive contributions to the integral are of opposite sign. As an example, consider the case where
f(x) =M(x) sin x and M(x) > 0: convergence will be much improved if ak = kπ rather than ak = 2kπ.

3 Recommendations on Choice and Use of Available Routines

Note. Refer to the Users’ Note for your implementation to check that a routine is available.

3.1 One-dimensional Fourier Transforms

The choice of routine is determined first of all by whether the data values constitute a real, Hermitian or
general complex sequence. It is wasteful of time and storage to use an inappropriate routine. The choice
is next determined by the users preferred storage format; where it is preferred for complex sequences to
be stored in two separate real arrays or for Hermitian sequences to be stored in real storage format (see
Section 2.1.2) then a real storage format routine should be used; where it is preferred for complex data
to be stored in complex arrays or for Hermitian sequences to be stored in complex storage format then
a complex storage format routine should be used.

Note also that the complex storage format routines have a reduced parameter list: there are no INIT or
TRIG parameters.

Three groups, each of three routines, are provided in real storage format and three groups of two routines
are provided in complex storage format.

Group 1 Group 2 Group 3 Group 4
Real storage format
Real sequences C06EAF C06FAF C06FPF
Hermitian sequences C06EBF C06FBF C06FQF
General complex sequences C06ECF C06FCF C06FRF

Complex storage format
Real/Hermitian sequences C06PAF C06PPF C06PQF
General complex sequences C06PCF C06PRF C06PSF

Group 1 routines each compute a single transform of length n, without requiring any extra working
storage. Group 2 routines also compute a single transform of length n, but require one additional real
(complex for C06PCF) work-array. For some values of n — when n has unpaired prime factors —
Group 1 routines are particularly slow and the Group 2 routines are much more efficient. The Group
1 and some Group 2 routines (C06FAF, C06FBF and C06FCF) impose some restrictions on the value
of n, namely that no prime factor of n may exceed 19 and the total number of prime factors (including
repetitions) may not exceed 20 (though the latter restriction only becomes relevant when n > 106).

Group 3 and Group 4 routines are all designed to perform several transforms in a single call, all with
the same value of n. They are designed to be much faster than the Group 1 and Group 2 routines on
vector-processing machines. They do however require more working storage. Even on scalar processors,
they may be somewhat faster than repeated calls to Group 1 or Group 2 routines because of reduced
overheads and because they pre-compute and store the required values of trigonometric functions. Group
3 and Group 4 routines differ in the way sequences are stored: Group 3 routines store sequences as rows
of a two-dimensional array while Group 4 routines store sequences as columns of a two-dimensional array.

[NP3390/19/pdf] C06.7

Introduction – C06 C06 – Summation of Series

Group 3 and Group 4 routines impose no practical restrictions on the value of n; however, the fast Fourier
transform algorithm ceases to be ‘fast’ if applied to values of n which cannot be expressed as a product
of small prime factors. All the above routines are particularly efficient if the only prime factors of n are
2, 3 or 5.

If extensive use is to be made of these routines, users who are concerned about efficiency are advised to
conduct their own timing tests.

To compute inverse (backward) discrete Fourier transforms the real storage format routines should be
used in conjunction with the utility routines C06GBF, C06GCF and C06GQF which form the complex
conjugate of a Hermitian or general sequence of complex data values. In the case of complex storage
format routines, there is a direction parameter which determines the direction of the transform; a call
to such a routine in the forward direction followed by a call in the backward direction reproduces the
original data.

3.2 Half- and Quarter-wave Transforms

Eight routines are provided for computing fast Fourier transforms (FFTs) of real symmetric sequences.
C06HAF and C06RAF compute multiple Fourier sine transforms, C06HBF and C06RBF compute
multiple Fourier cosine transforms, C06HCF and C06RCF compute multiple quarter-wave Fourier sine
transforms, and C06HDF and C06RDF compute multiple quarter-wave Fourier cosine transforms. There
are two routines for each type of transform; the routines C06RAF, C06RBF, C06RCF and C06RDF have
shorter parameter lists than their counterparts and are therefore simpler to use.

3.3 Application to Elliptic Partial Differential Equations

As described in Section 2.1, Fourier transforms may be used in the solution of elliptic PDEs.

C06HAF and C06RAF may be used to solve equations where the solution is specified along the boundary.

C06HBF and C06RBF may be used to solve equations where the derivative of the solution is specified
along the boundary.

C06HCF and C06RCF may be used to solve equations where the solution is specified on the lower
boundary, and the derivative of the solution is specified on the upper boundary.

C06HDF and C06RDF may be used to solve equations where the derivative of the solution is specified
on the lower boundary, and the solution is specified on the upper boundary.

For equations with periodic boundary conditions the full-range Fourier transforms computed by C06FPF
and C06FQF are appropriate.

3.4 Multi-dimensional Fourier Transforms

The following routines compute multi-dimensional discrete Fourier transforms of complex data:

Real storage Complex storage
2 dimensions C06FUF C06PUF
3 dimensions C06FXF C06PXF
any number of dimensions C06FJF C06PJF

The real storage format routines store sequences of complex data in two real arrays containing the
real and imaginary parts of the sequence respectively. The complex storage format routines store the
sequences in complex arrays.

Note that complex storage format routines have a reduced parameter list, having no INIT or TRIG
parameters.

C06FUF (C06PUF) and C06FXF (C06PXF) should be used in preference to C06FJF (C06PJF) for two-
and three-dimensional transforms, as they are easier to use and are likely to be more efficient, especially
on vector processors.

C06.8 [NP3390/19/pdf]

C06 – Summation of Series Introduction – C06

3.5 Convolution and Correlation

C06EKF and C06FKF each compute either the discrete convolution or the discrete correlation of two real
vectors. The distinction between these two routines is the same as that between the C06E- and C06F-
routines described in Section 3.1. C06PKF computes either the discrete convolution or the discrete
correlation of two complex vectors.

3.6 Inverse Laplace Transforms

Two methods are provided: Weeks’ method and Crump’s method. Both require the function F (s) to be
evaluated for complex values of s. If in doubt which method to use, try Weeks’ method first; when it is
suitable, it is usually much faster.

Typically the inversion of a Laplace transform becomes harder as t increases so that all numerical methods
tend to have a limit on the range of t for which the inverse f(t) can be computed. C06LAF is useful for
small and moderate values of t.

It is often convenient or necessary to scale a problem so that α is close to 0. For this purpose it is
useful to remember that the inverse of F (s+ k) is exp(−kt)f(t). The method used by C06LAF is not so
satisfactory when f(t) is close to zero, in which case a term may be added to F (s), e.g.,, k/s+ F (s) has
the inverse k + f(t).

Singularities in the inverse function f(t) generally cause numerical methods to perform less well. The
positions of singularities can often be identified by examination of F (s). If F (s) contains a term of the
form exp(−ks)/s then a finite discontinuity may be expected in the inverse at t = k. C06LAF, for
example, is capable of estimating a discontinuous inverse but, as the approximation used is continuous,
Gibbs’ phenomena (overshoots around the discontinuity) result. If possible, such singularities of F (s)
should be removed before computing the inverse.

3.7 Direct Summation of Orthogonal Series

The only routine available is, C06DBF, which sums a finite Chebyshev series

n∑
j=0

cjTj(x),
n∑

j=0

cjT2j(x) or
n∑

j=0

cjT2j+1(x)

depending on the choice of a parameter.

3.8 Acceleration of Convergence

The only routine available is, C06BAF.

4 Index

Acceleration of convergence C06BAF
Complex conjugate,
complex sequence C06GCF
Hermitian sequence C06GBF
multiple Hermitian sequences C06GQF

Complex sequence from Hermitian sequences C06GSF
Convolution or Correlation
real vectors, space-saving C06EKF
real vectors, time-saving C06FKF
complex vectors, time-saving C06PKF

Discrete Fourier Transform
multi-dimensional
complex sequence, real storage C06FJF
complex sequence, complex storage C06PJF

two-dimensional
complex sequence, real storage C06FUF

[NP3390/19/pdf] C06.9

Introduction – C06 C06 – Summation of Series

complex sequence, complex storage C06PUF

three-dimensional
complex sequence, real storage C06FXF
complex sequence, complex storage C06PXF

one-dimensional, multi-variable
complex sequence, real storage C06FFF
complex sequence, complex storage C06PFF

one-dimensional, multiple transforms
complex sequence, real storage by rows C06FRF
complex sequence, complex storage by rows C06PRF
complex sequence, complex storage by columns C06PSF
Hermitian sequence, real storage by rows C06FQF
real sequence, real storage by rows C06FPF
Hermitian/real sequence, complex storage by rows C06PPF
Hermitian/real sequence, complex storage by columns C06PQF

one-dimensional, single transforms
complex sequence, space saving, real storage C06ECF
complex sequence, time-saving, real storage C06FCF
complex sequence, time-saving, complex storage C06PCF
Hermitian sequence, space-saving, real storage C06EBF
Hermitian sequence, time-saving, real storage C06FBF
real sequence, space-saving, real storage C06EAF
real sequence, time-saving, real storage C06FAF
Hermitian/real sequence, time-saving, complex storage C06PAF

half- and quarter-wave transforms
multiple Fourier sine transforms C06HAF
multiple Fourier sine transforms, simple use C06RAF
multiple Fourier cosine transforms C06HBF
multiple Fourier cosine transforms, simple use C06RBF
multiple quarter-wave sine transforms C06HCF
multiple quarter-wave sine transforms, simple use C06RCF
multiple quarter-wave cosine transforms C06HDF
multiple quarter-wave cosine transforms, simple use C06RDF

Inverse Laplace Transform
Crump’s method C06LAF
Weeks’ method
compute coefficients of solution C06LBF
evaluate solution C06LCF

Summation of Chebyshev series C06DBF

5 Routines Withdrawn or Scheduled for Withdrawal

None since Mark 13.

6 References

[1] Brigham E O (1973) The Fast Fourier Transform Prentice–Hall

[2] Davies S B and Martin B (1979) Numerical inversion of the Laplace transform: A survey and
comparison of methods J. Comput. Phys. 33 1–32

[3] Fox L and Parker I B (1968) Chebyshev Polynomials in Numerical Analysis Oxford University Press

[4] GentlemanW S and Sande G (1966) Fast Fourier transforms for fun and profit Proc. Joint Computer
Conference, AFIPS 29 563–578

[5] Hamming R W (1962) Numerical Methods for Scientists and Engineers McGraw–Hill

C06.10 [NP3390/19/pdf]

C06 – Summation of Series Introduction – C06

[6] Shanks D (1955) Nonlinear transformations of divergent and slowly convergent sequences J. Math.
Phys. 34 1–42

[7] Swarztrauber P N (1977) The methods of cyclic reduction, Fourier analysis and the FACR algorithm
for the discrete solution of Poisson’s equation on a rectangle SIAM Rev. 19 (3) 490–501

[8] Swarztrauber P N (1984) Fast Poisson solvers Studies in Numerical Analysis (ed G H Golub)
Mathematical Association of America

[9] Swarztrauber P N (1986) Symmetric FFT’s Math. Comput. 47 (175) 323–346

[10] Wynn P (1956) On a device for computing the em(Sn) transformation Math. Tables Aids Comput.
10 91–96

[NP3390/19/pdf] C06.11 (last)

