
D02 – Ordinary Differential Equations

D02SAF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

D02SAF solves a two-point boundary-value problem for a system of first-order ordinary differential
equations with boundary conditions, combined with additional algebraic equations. It uses initial value
techniques and a modified Newton iteration in a shooting and matching method.

2 Specification

SUBROUTINE D02SAF(P, M, N, N1, PE, PF, E, DP, NPOINT, WP, IWP,
1 ICOUNT, RANGE, BC, FCN, EQN, CONSTR, YMAX,
2 MONIT, PRSOL, W, IW1, IW2, IFAIL)
INTEGER M, N, N1, NPOINT, IWP, ICOUNT, IW1, IW2
real P(M), PE(M), PF(M), E(N), DP(M), WP(IWP,6),
1 YMAX, W(IW1,IW2), IFAIL
LOGICAL CONSTR
EXTERNAL RANGE, BC, FCN, EQN, CONSTR, MONIT, PRSOL

3 Description

D02SAF solves a two-point boundary-value problem for a system of n first-order ordinary differential
equations with separated boundary conditions by determining certain unknown parameters p1, p2, . . . , pm.
(There may also be additional algebraic equations to be solved in the determination of the parameters
and, if so, these equations are defined by the routine EQN.) The parameters may be, but need not be,
boundary values; they may include eigenvalues, parameters in the coefficients of the differential equations,
coefficients in series expansions or asymptotic expansions for boundary values, the length of the range of
definition of the system of differential equations etc..

It is assumed that we have a system of n differential equations of the form

y′ = f(x, y, p) (1)

where p = (p1, p2, . . . , pm)T is the vector of parameters, and that the derivative f is evaluated by a
routine FCN. Also, n1 of the equations are assumed to depend on p. For n1 < n then n − n1 equations
of the system are not involved in the matching process. These are the driving equations; they should be
independent of p and of the solution of the other n1 equations. In numbering the equations in FCN and
BC the driving equations must be put first (as they naturally occur in most applications). The range
of definition [a, b] of the differential equations is defined by the routine RANGE and may depend on the
parameters p1, p2, . . . , pm (that is, on p). RANGE must define the points x1, x2, . . . , xNPOINT, NPOINT
≥ 2, which must satisfy

a = x1 < x2 < . . . < xNPOINT = b (2)

(or a similar relationship with all the inequalities reversed).

If NPOINT > 2 the points x1, x2, . . . , xNPOINT can be used to break up the range of definition. Integration
is restarted at each of these points. This means that the differential equations (1) can be defined differently
in each sub-interval [xi, xi+1], for i = 1, 2, . . . ,NPOINT−1. Also, since initial and maximum integration
step sizes can be supplied on each sub-interval (via the array WP), the user can indicate parts of the
range [a, b] where the solution y(x) may be difficult to obtain accurately and can take appropriate action.

The boundary conditions may also depend on the parameters and are applied at a = x1 and b = xNPOINT.
They are defined (in the routine BC) in the form

y(a) = g1(p), y(b) = g2(p). (3)

The boundary-value problem is solved by determining the unknown parameters p by a shooting and
matching technique. The differential equations are always integrated from a to b with initial values

[NP3390/19/pdf] D02SAF.1

D02SAF D02 – Ordinary Differential Equations

y(a) = g1(p). The solution vector thus obtained at x = b is subtracted from the vector g2(p) to give
the n1 residuals r1(p), ignoring the first n − n1, driving equations. Because the direction of integration
is always from a to b, it is unnecessary, in BC, to supply values for the first n − n1 boundary values at
b, that is the first n − n1 components of g2 in (3). For n1 < m then r1(p). Together with the m − n1

equations defined by routine EQN,
r2(p) = 0, (4)

these give a vector of residuals r, which at the solution, p, must satisfy

r(p) =
(

r1(p)
r2(p)

)
= 0. (5)

These equations are solved by a pseudo-Newton iteration which uses a modified singular value
decomposition of J = ∂r

∂p when solving the linear equations which arise. The Jacobian J used in Newton’s
method is obtained by numerical differentiation. The parameters at each Newton iteration are accepted
only if the norm ‖D−1J̃+r‖2 is much reduced from its previous value. Here J̃+ is the pseudo-inverse,
calculated from the singular value decomposition, of a modified version of the Jacobian J (J+ is actually
the inverse of the Jacobian in well-conditioned cases). D is a diagonal matrix with

dii = max(|pi|,PF(i)) (6)

where PF is an array of floor values.

See Deuflhard [3] for further details of the variants of Newton’s method used, Gay [2] for the modification
of the singular value decomposition and Gladwell [4] for an overview of the method used.

Two facilities are provided to prevent the pseudo-Newton iteration running into difficulty. First, the user
is permitted to specify constraints on the values of the parameters p via a logical function CONSTR.
These constraints are only used to prevent the Newton iteration using values for p which would violate
them; that is, they are not used to determine the values of p. Secondly, the user is permitted to specify a
maximum value ymax for ‖y(x)‖∞ at all points in the range [a, b]. It is intended that this facility be used
to prevent machine ‘overflow’ in the integrations of equation (1) due to poor choices of the parameters
p which might arise during the Newton iteration. When using this facility, it is presumed that the user
has an estimate of the likely size of ‖y(x)‖∞ at all points x ∈ [a, b]. ymax should then be chosen rather
larger (say by a factor of 10) than this estimate.

The user is strongly advised to supply a routine MONIT (or to call the ‘default’ routine D02HBX, see
below) to monitor the progress of the pseudo-Newton iteration. The user can output the solution of
the problem y(x) by supplying a suitable routine PRSOL (an example is given in Section 9 of a routine
designed to output the solution at equally spaced points).

D02SAF is designed to try all possible options before admitting failure and returning to the user. Provided
the routine can start the Newton iteration from the initial point p it will exhaust all the options available
to it (though the user can override this by specifying a maximum number of iterations to be taken). The
fact that all its options have been exhausted is the only error exit from the iteration. Other error exits
are possible, however, whilst setting up the Newton iteration and when computing the final solution.

The user who requires more background information about the solution of boundary value problems
by shooting methods is recommended to read the appropriate chapters of Hall and Watt [1], and for a
detailed description of D02SAF Gladwell [4] is recommended.

4 References

[1] Hall G and Watt J M (ed.) (1976) Modern Numerical Methods for Ordinary Differential Equations
Clarendon Press, Oxford

[2] Gay D (1976) On modifying singular values to solve possibly singular systems of nonlinear equations
Working Paper 125 Computer Research Centre, National Bureau for Economics and Management
Science, Cambridge, MA

[3] Deuflhard P (1974) A modified Newton method for the solution of ill-conditioned systems of
nonlinear equations with application to multiple shooting Numer. Math. 22 289–315

D02SAF.2 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02SAF

[4] Gladwell I (1979) The development of the boundary value codes in the ordinary differential equations
chapter of the NAG Library Codes for Boundary Value Problems in Ordinary Differential Equations.
Lecture Notes in Computer Science (ed B Childs, M Scott, J W Daniel, E Denman and P Nelson)
76 Springer-Verlag

5 Parameters

1: P(M) — real array Input/Output

On entry: P(i) must be set to an estimate of the ith parameter, pi, for i = 1, 2, . . . , m.

On exit: the corrected value for the ith parameter, unless an error has occurred, when it contains
the last calculated value of the parameter.

2: M — INTEGER Input

On entry: the number of parameters, m.

Constraint: M > 0.

3: N — INTEGER Input

On entry: the total number of differential equations, n.

Constraint: N > 0.

4: N1 — INTEGER Input

On entry: the number of differential equations active in the matching process, n1. The active
equations must be placed last in the numbering in the routines FCN and BC (see below). The first
N − N1 equations are used as the driving equations.

Constraint: N1 ≤ N, N1 ≤ M and N1 > 0.

5: PE(M) — real array Input

On entry: PE(i), for i = 1, 2, . . . , m, must be set to a positive value for use in the convergence test
in the ith parameter pi. See the specification of PF below for further details.

Constraint: PE(i) > 0, for i = 1, 2, . . . , m.

6: PF(M) — real array Input/Output

On entry: PF(i), for i = 1, 2, . . . , m, should be set to a ‘floor’ value in the convergence test on the
ith parameter pi. If PF(i) ≤ 0.0 on entry then it is set to the small positive value

√
ε (where ε may

in most cases be considered to be machine precision); otherwise it is used unchanged.

The Newton iteration is presumed to have converged if a full Newton step is taken (ISTATE = 1 in
the specification of MONIT below), the singular values of the Jacobian are not being significantly
perturbed (also see MONIT) and if the Newton correction Ci satisfies

|Ci| ≤ PE(i)×max(|pi|,PF(i)), i = 1, 2, . . . , m,

where pi is the current value of the ith parameter. The values PF(i) are also used in determining
the Newton iterates as discussed in Section 3, see equation (6).

On exit: the values actually used.

7: E(N) — real array Input

On entry: values for use in controlling the local error in the integration of the differential equations.
If erri is an estimate of the local error in yi, for i = 1, 2, . . . , n then

|erri| ≤ E(i)×max{
√

ε, |yi|}

where ε may in most cases be considered to be machine precision.

Suggested value: E(i) = 10−5.

Constraint: E(i) > 0.0, for i = 1, 2, . . . ,N.

[NP3390/19/pdf] D02SAF.3

D02SAF D02 – Ordinary Differential Equations

8: DP(M) — real array Input/Output

On entry: a value to be used in perturbing the parameter pi in the numerical differentiation to
estimate the Jacobian used in Newton’s method. If DP(i) = 0.0 on entry, an estimate is made
internally by setting

DP(i) =
√

ε ×max(PF(i), |pi|) (7)

where pi is the initial value of the parameter supplied by the user and ε may in most cases be
considered to be machine precision. The estimate of the Jacobian, J , is made using forward
differences, that is for each i, for i = 1, 2, . . . , m, pi is perturbed to pi + DP(i) and the ith column
of J is estimated as

(r(pi +DP(i))− r(pi))/DP(i)

where the other components of p are unchanged (see (3) for the notation used). If this fails to
produce a Jacobian with significant columns, backward differences are tried by perturbing pi to pi

− DP(i) and if this also fails then central differences are used with pi perturbed to pi + 10.0 ×
DP(i). If this also fails then the calculation of the Jacobian is abandoned. If the Jacobian has
not previously been calculated then an error exit is taken. If an earlier estimate of the Jacobian is
available then the current parameter set, pi, for i = 1, 2, . . . ,M, is abandoned in favour of the last
parameter set from which useful progress was made and the singular values of the Jacobian used at
the point are modified before proceeding with the Newton iteration. The user is recommended to
use the default value DP(i) = 0.0 unless he has prior knowledge of a better choice. If any of the
perturbations described above are likely to lead to an unfortunate set of parameter values then the
user should use the LOGICAL FUNCTION CONSTR (see below) to prevent such perturbations
(all changes of parameters are checked by a call to CONSTR).

On exit: the values actually used.

9: NPOINT — INTEGER Input

On entry: 2 plus the number of break-points in the range of definition of the system of differential
equations (1).

Constraint: NPOINT ≥ 2.

10: WP(IWP,6) — real array Input/Output

On entry: WP(i, 1) must contain an estimate for an initial step size for integration across the ith
sub-interval [X(i), X(i + 1)], i = 1, 2, . . . ,NPOINT−1 (see RANGE below). WP(i, 1) should have
the same sign as X(i + 1) − X(i) if it is non-zero. If WP(i, 1) = 0.0, on entry, a default value for
the initial step size is calculated internally. This is the recommended mode of entry.

WP(i, 3) must contain a lower bound for the modulus of the step size on the ith sub-interval [X(i),
X(i+1)], for i = 1, 2, . . . ,NPOINT−1. If WP(i, 3) = 0.0 on entry, a very small default value is used.
By setting WP(i, 3) > 0.0 but smaller than the expected step sizes (assuming the user has some
insight into the likely step sizes) expensive integrations with parameters p far from the solution can
be avoided.

WP(i, 2) must contain an upper bound on the modulus of the step size to be used in the integration
on [X(i), X(i+1)], i = 1, 2, . . . ,NPOINT−1. If WP(i, 2) = 0.0 on entry no bound is assumed. This
is the recommended mode of entry unless the solution is expected to have important features which
might be ‘missed’ in the integration if the step size were permitted to be chosen freely.

On exit: WP(i, 1) contains the initial step size used on the last integration on [X(i), X(i + 1)], for
i = 1, 2, . . . ,NPOINT−1, (excluding integrations during the calculation of the Jacobian).

WP(i, 2), for i = 1, 2, . . . ,NPOINT−1, is usually unchanged. If the maximum step size WP(i, 2)
is so small or the length of the range [X(i), X(i + 1)] is so short that on the last integration the
step size was not controlled in the main by the size of the error tolerances E(i) but by these other
factors, then WP(NPOINT,2) is set to the floating-point value of i if the problem last occurred in
[X(i), X(i+1)]. Any results obtained when this value is returned as non-zero should be viewed with
caution.

WP(i, 3), for i = 1, 2, . . . ,NPOINT−1 are unchanged.

D02SAF.4 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02SAF

If an error exit with IFAIL = 4, 5, or 6 (see Section 6) occurs on the integration made from X(i) to
X(i + 1) the floating-point value of i is returned in WP(NPOINT,1). The actual point x ∈ [X(i),
X(i + 1)] where the error occurred is returned in WP(1,5) (see also the specification of W). The
floating-point value of NPOINT is returned in WP(NPOINT,1) if the error exit is caused by a call
to BC.

If an error exit occurs when estimating the Jacobian matrix (IFAIL = 7, 8, 9, 10, 11, 12, see
Section 6) and if parameter pi was the cause of the failure then on exit WP(NPOINT,1) contains
the floating-point value of i.

WP(i, 4) contains the point X(i), for i = 1, 2, . . . ,NPOINT, used at the solution p or at the final
values of p if an error occurred.

WP is also partly used as workspace.

11: IWP — INTEGER Input

On entry: the first dimension of the array WP as declared in the (sub)program from which D02SAF
is called.

Constraint: IWP ≥ NPOINT.

12: ICOUNT — INTEGER Input

On entry: an upper bound on the number of Newton iterations. If ICOUNT = 0 on entry, no check
on the number of iterations is made (this is the recommended mode of entry).

Constraint: ICOUNT ≥ 0.

13: RANGE — SUBROUTINE, supplied by the user. External Procedure

RANGE must specify the break-points xi, for i = 1, 2, . . . ,NPOINT, which may depend on the
parameters pj , for j = 1, 2, . . . ,M.

Its specification is:

SUBROUTINE RANGE(X, NPOINT, P, M)
INTEGER NPOINT, M
real X(NPOINT), P(M)

1: X(NPOINT) — real array Output
On exit: the ith break-point, for i = 1, 2, . . . ,NPOINT. The sequence (X(i)) must be strictly
monotonic, that is either

a = X(1) < X(2) < . . . < X(NPOINT) = b

or a = X(1) > X(2) > . . . > X(NPOINT) = b

2: NPOINT — INTEGER Input
On entry: two plus the number of break-points in (a, b).

3: P(M) — real array Input
On entry: the current estimate of the ith parameter, for i = 1, 2, . . . , m.

4: M — INTEGER Input
On entry: the number of parameters, m.

RANGE must be declared as EXTERNAL in the (sub)program from which D02SAF is called.
Parameters denoted as Input must not be changed by this procedure.

[NP3390/19/pdf] D02SAF.5

D02SAF D02 – Ordinary Differential Equations

14: BC — SUBROUTINE, supplied by the user. External Procedure

BC must place in G1 and G2 the boundary conditions at a and b respectively.

Its specification is:

SUBROUTINE BC(G1, G2, P, M, N)
INTEGER M, N
real G1(N), G2(N), P(M)

1: G1(N) — real array Output
On exit: the value of yi(a), (where this may be a known value or a function of the parameters
pj , for j = 1, 2, . . . , m), for i = 1, 2, . . . , n.

2: G2(N) — real array Output
On exit: the value of yi(b), for i = 1, 2, . . . , n, (where these may be known values or functions
of the parameters pj , for j = 1, 2, . . . , m). If n > n1, so that there are some driving equations,
then the first n − n1 values of G2 need not be set since they are never used.

3: P(M) — real array Input
On entry: an estimate of the ith parameter, pi, for i = 1, 2, . . . , m.

4: M — INTEGER Input
On entry: the number of parameters, m.

5: N — INTEGER Input
On entry: the number of differential equations, n.

BC must be declared as EXTERNAL in the (sub)program from which D02SAF is called. Parameters
denoted as Input must not be changed by this procedure.

15: FCN — SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions fi (i.e., the derivatives y′
i), for i = 1, 2, . . . , n.

Its specification is:

SUBROUTINE FCN(X, Y, F, N, P, M, I)
INTEGER N, M, I
real X, Y(N), F(N), P(M)

1: X — real Input
On entry: the value of the argument x.

2: Y(N) — real array Input
On entry: the value of the argument yi, for i = 1, 2, . . . , n.

3: F(N) — real array Output
On exit: the derivative of yi evaluated at x, for i = 1, 2, . . . , n. F(i) may depend upon the
parameters pj , for j = 1, 2, . . . , m. If there are any driving equations (see Section 3) then these
must be numbered first in the ordering of the components of F.

4: N — INTEGER Input
On entry: the number of equations, n.

5: P(M) — real array Input
On entry: the current estimate of the ith parameter, pi, for i = 1, 2, . . . , m.

6: M — INTEGER Input
On entry: the number of parameters, m.

D02SAF.6 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02SAF

7: I — INTEGER Input
On entry: specifies the sub-interval [xi, xi+1] on which the derivatives are to be evaluated.

FCN must be declared as EXTERNAL in the (sub)program from which D02SAF is called.
Parameters denoted as Input must not be changed by this procedure.

16: EQN — SUBROUTINE, supplied by the user. External Procedure

EQN is used to describe the additional algebraic equations to be solved in the determination of the
parameters, pi, for i = 1, 2, . . . , m. If there are no additional algebraic equations (i.e., m = n1) then
EQN is never called and the dummy routine D02HBZ should be used as the actual argument.

Its specification is:

SUBROUTINE EQN(E, Q, P, M)
INTEGER Q, M
real E(Q), P(M)

1: E(Q) — real array Output
On exit: the vector of residuals, r2(p), that is the amount by which the current estimates of
the parameters fail to satisfy the algebraic equations.

2: Q — INTEGER Input
On entry: the number of algebraic equations, m − n1.

3: P(M) — real array Input
On entry: the current estimate of the ith parameter pi, for i = 1, 2, . . . , m.

4: M — INTEGER Input
On entry: the number of parameters, m.

EQN must be declared as EXTERNAL in the (sub)program from which D02SAF is called.
Parameters denoted as Input must not be changed by this procedure.

17: CONSTR — LOGICAL FUNCTION, supplied by the user. External Procedure

CONSTR is used to prevent the pseudo-Newton iteration running into difficulty. CONSTR should
return the value .TRUE. if the constraints are satisfied by the parameters p1, p2, . . . , pm. Otherwise
CONSTR should return the value .FALSE.. Usually the dummy function D02HBY, which returns
the value .TRUE. at all times, will suffice and in the first instance this is recommended as the actual
parameter.

Its specification is:

LOGICAL FUNCTION CONSTR(P, M)
INTEGER M
real P(M)

1: P(M) — real array Input
On entry: an estimate of the ith parameter, pi, for i = 1, 2, . . . , m.

2: M — INTEGER Input
On entry: the number of parameters, m.

CONSTR must be declared as EXTERNAL in the (sub)program from which D02SAF is called.
Parameters denoted as Input must not be changed by this procedure.

[NP3390/19/pdf] D02SAF.7

D02SAF D02 – Ordinary Differential Equations

18: YMAX — real Input

On entry: a non-negative value which is used as a bound on all values ‖y(x)‖∞ where y(x) is the
solution at any point x between X(1) and X(NPOINT) for the current parameters p1, p2, . . . , pm.
If this bound is exceeded the integration is terminated and the current parameters are rejected.
Such a rejection will result in an error exit if it prevents the initial residual or Jacobian, or the final
solution, being calculated. If YMAX = 0 on entry, no bound on the solution y is used; that is the
integrations proceed without any checking on the size of ‖y‖∞.

19: MONIT — SUBROUTINE, supplied by the user. External Procedure

MONIT enables the user to monitor the values of various quantities during the calculation. It is
called by D02SAF after every calculation of the norm ‖D−1J̃+r‖2 which determines the strategy
of the Newton method, every time there is an internal error exit leading to a change of strategy,
and before an error exit when calculating the initial Jacobian. Usually the routine D02HBX will be
adequate and the user is advised to use this as the actual parameter for MONIT in the first instance.
(In this case a call to X04ABF must be made prior to the call of D02SAF). If no monitoring is
required, the dummy routine D02SAS may be used. (In some implementations of the Library the
names D02HBX and D02SAS are changed to HBXD02 and SASD02: refer to the Users’ Note for
your implementation).

Its specification is:

SUBROUTINE MONIT(ISTATE, IFLAG, IFAIL1, P, M, F, PNORM, PNORM1,
1 EPS, D)
INTEGER ISTATE, IFLAG, IFAIL1, M
real P(M), F(M), PNORM, PNORM1, EPS, D(M)

1: ISTATE — INTEGER Input
On entry: the state of the Newton iteration:

ISTATE = 0

the calculation of the residual, Jacobian and ‖D−1J̃+r‖2 are taking place.
ISTATE = 1 to 5

during the Newton iteration a factor of 2(−ISTATE+1) of the Newton step is being used to
try to reduce the norm.

ISTATE = 6

the current Newton step has been rejected and the Jacobian is being re-calculated.
ISTATE = −6 to −1

an internal error exit has caused the rejection of the current set of parameter values, p.
−ISTATE is the value which ISTATE would have taken if the error had not occurred.

ISTATE = −7

an internal error exit has occurred when calculating the initial Jacobian.

2: IFLAG — INTEGER Input
On entry: whether or not the Jacobian being used has been calculated at the beginning of the
current iteration. If the Jacobian has been updated then IFLAG = 1; otherwise IFLAG = 2.
The Jacobian is only calculated when convergence to the current parameter values has been
slow.

3: IFAIL1 — INTEGER Input
On entry: if −6 ≤ ISTATE ≤ −1, IFAIL1 specifies the IFAIL error number that would be
produced were control returned to the user. IFAIL1 is unspecified for values of ISTATE outside
this range.

4: P(M) — real array Input
On entry: the current estimate of the ith parameter, pi, for i = 1, 2, . . . , m.

D02SAF.8 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02SAF

5: M — INTEGER Input
On entry: the number of parameters, m.

6: F(M) — real array Input
On entry: the residual r corresponding to the current parameter values, provided 1 ≤ ISTATE
≤ 5 or ISTATE = −7. F is unspecified for other values of ISTATE.

7: PNORM — real Input
On entry: a quantity against which all reductions in norm are currently measured.

8: PNORM1 — real Input
On entry: the norm of the current parameters, p. It is set for 1 ≤ ISTATE ≤ 5 and is undefined
for other values of ISTATE.

9: EPS — real Input
On entry: EPS gives some indication of the convergence rate. It is the current singular value
modification factor (see Gay [2]). It is 0 initially and whenever convergence is proceeding

steadily. EPS is ε
3
8 or greater (where ε may in most cases be considered machine precision)

when the singular values of J are approximately zero or when convergence is not being achieved.
The larger the value of EPS the worse the convergence rate. When EPS becomes too large the
Newton iteration is terminated.

10: D(M) — real array Input
On entry: the singular values of the current modified Jacobian matrix, J . If D(m) is small
relative to D(1) for a number of Jacobians corresponding to different parameter values then
the computed results should be viewed with suspicion. It could be that the matching equations
do not depend significantly on some parameter (which could be due to a programming error in
FCN, BC, RANGE or EQN). Alternatively, the system of differential equations may be very
ill-conditioned when viewed as an initial value problem, in which case this routine is unsuitable.
This may also be indicated by some singular values being very large. These values of D(i),
i = 1, 2, . . . , m should not be changed.

MONIT must be declared as EXTERNAL in the (sub)program from which D02SAF is called.
Parameters denoted as Input must not be changed by this procedure.

20: PRSOL — SUBROUTINE, supplied by the user. External Procedure

PRSOL can be used to obtain values of the solution y at a selected point z by integration across
the final range [X(1),X(NPOINT)]. If no output is required D02HBW can be used as the actual
parameter.

Its specification is:

SUBROUTINE PRSOL(Z, Y, N)
INTEGER N
real Z, Y(N)

1: Z — real Input/Output
On entry: contains x1 on the first call. On subsequent calls Z contains its previous output
value.

On exit: the next point at which output is required. The new point must be nearer X(NPOINT)
than the old.

If Z is set to a point outside [X(1),X(NPOINT)] the process stops and control returns from
D02SAF to the (sub)program from which D02SAF is called. Otherwise the next call to PRSOL
is made by D02SAF at the point Z, with solution values y1, y2, . . . , yn at Z contained in Y.
If Z is set to X(NPOINT) exactly, the final call to PRSOL is made with y1, y2, . . . , yn as

[NP3390/19/pdf] D02SAF.9

D02SAF D02 – Ordinary Differential Equations

values of the solution at X(NPOINT) produced by the integration. In general the solution
values obtained at X(NPOINT) from PRSOL will differ from the values obtained at this
point by a call to routine BC. The difference between the two solutions is the residual r.
The user is reminded that the points X(1),X(2),...,X(NPOINT) are available in the locations
WP(1,4),WP(2,4),...,WP(NPOINT,4) at all times.

2: Y(N) — real array Input
On entry: the solution value yi at z, for i = 1, 2, . . . , n.

3: N — INTEGER Input
On entry: the total number of differential equations, n.

PRSOL must be declared as EXTERNAL in the (sub)program from which D02SAF is called.
Parameters denoted as Input must not be changed by this procedure.

21: W(IW1,IW2) — real array Output

On exit: in the case of an error exit of the type where the point of failure is returned in WP(1,5),
the solution at this point of failure is returned in W(i, 1), for i = 1, 2, . . . , n.

Otherwise W is used for workspace.

22: IW1 — INTEGER Input

On entry: the first dimension of the array W as declared in the (sub)program from which D02SAF
is called.

Constraint: IW1 ≥ max(N,M).

23: IW2 — INTEGER Input

On entry: the second dimension of the array W as declared in the (sub)program from which D02SAF
is called.

Constraint: IW2 ≥ 3 × M + 12 + max(11,M).

24: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

One or more of the parameters N, N1, M, IWP, NPOINT, ICOUNT, IW1, IW2, E, PE or YMAX
has been incorrectly set.

IFAIL = 2

The constraints have been violated by the initial parameters.

IFAIL = 3

The condition X(1) < X(2) < . . . < X(NPOINT) (or X(1) > X(2) > . . . > X(NPOINT)) has been
violated on a call to RANGE with the initial parameters.

D02SAF.10 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02SAF

IFAIL = 4

In the integration from X(1) to X(NPOINT) with the initial or the final parameters, the step size
was reduced too far for the integration to proceed. Consider reversing the order of the points
X(1),X(2),...,X(NPOINT). If this error exit still results, it is likely that D02SAF is not a suitable
method for solving the problem, or the initial choice of parameters is very poor, or the accuracy
requirement specified by E(i), for i = 1, 2, . . . , n, is too stringent.

IFAIL = 5

In the integration from X(1) to X(NPOINT) with the initial or final parameters, an initial step
could not be found to start the integration on one of the intervals X(i) to X(i + 1). Consider
reversing the order of the points. If this error exit still results it is likely that D02SAF is not a
suitable routine for solving the problem, or the initial choice of parameters is very poor, or the
accuracy requirement specified by E(i), for i = 1, 2, . . . , n, is much too stringent.

IFAIL = 6

In the integration from X(1) to X(NPOINT) with the initial or final parameters, the solution
exceeded YMAX in magnitude (when YMAX > 0). It is likely that the initial choice of parameters
was very poor or YMAX was incorrectly set.

Note: on an error with IFAIL = 4, 5 or 6 with the initial parameters, the interval in which failure
occurs is contained in WP(NPOINT,1). If a subroutine MONIT similar to the one in Section 9
is being used then it is a simple matter to distinguish between errors using the initial and final
parameters. None of the error exits IFAIL = 4, 5 or 6 should occur on the final integration (when
computing the solution) as this integration has already been performed previously with exactly
the same parameters pi, for i = 1, 2, . . . , m. Seek expert help if this error occurs.

IFAIL = 7

On calculating the initial approximation to the Jacobian, the constraints were violated.

IFAIL = 8

On perturbing the parameters when calculating the initial approximation to the Jacobian, the
condition X(1) < X(2) < . . . < X(NPOINT) (or X(1) > X(2) > . . . > X(NPOINT)) is violated.

IFAIL = 9

On calculating the initial approximation to the Jacobian, the integration step size was reduced too
far to make further progress (see IFAIL = 4).

IFAIL = 10

On calculating the initial approximation to the Jacobian, the initial integration step size on some
interval was too small (see IFAIL = 5).

IFAIL = 11

On calculating the initial approximation to the Jacobian, the solution of the system of differential
equations exceeded YMAX in magnitude (when YMAX > 0).

Note: all the error exits IFAIL = 7, 8, 9, 10 and 11 can be treated by reducing the size of some or
all the elements of DP.

IFAIL = 12

On calculating the initial approximation to the Jacobian, a column of the Jacobian is found to be
insignificant. This could be due to an element DP(i) being too small (but non-zero) or the solution
having no dependence on one of the parameters (a programming error).

Note: on an error exit with IFAIL = 7, 8, 9, 10, 11 or 12, if a perturbation of the parameter pi is
the cause of the error then WP(NPOINT,1) will contain the floating-point value of i.

IFAIL = 13

After calculating the initial approximation to the Jacobian, the calculation of its singular value
decomposition failed. It is likely that the error will never occur as it is usually associated with
the Jacobian having multiple singular values. To remedy the error it should only be necessary
to change the initial parameters. If the error persists it is likely that the problem has not been
correctly formulated.

[NP3390/19/pdf] D02SAF.11

D02SAF D02 – Ordinary Differential Equations

IFAIL = 14

The Newton iteration has failed to converge after exercising all its options. The user is strongly
recommended to monitor the progress of the iteration via the parameter MONIT. There are many
possible reasons for the iteration not converging. Amongst the most likely are:

(a) there is no solution;
(b) the initial parameters are too far away from the correct parameters;
(c) the problem is too ill-conditioned as an initial value problem for Newton’s method to choose

suitable corrections;
(d) the accuracy requirements for convergence are too restrictive, that is some of the components

of PE (and maybe PF) are too small – in this case the final value of this norm output via
MONIT will usually be very small; or

(e) the initial parameters are so close to the solution parameters p that the Newton iteration
cannot find improved parameters. The norm output by MONIT should be very small.

IFAIL = 15

The number of iterations permitted by ICOUNT has been exceeded (in the case when ICOUNT
> 0 on entry).

IFAIL = 16, 17, 18 and 19

These indicate that there has been a serious error in one of the auxiliary routines D02SAZ,
D02SAW, D02SAX or D02SAU respectively. Check all subroutine calls and array dimensions.
Seek expert help.

7 Accuracy

If the iteration converges, the accuracy to which the unknown parameters are determined is usually close
to that specified by the user. The accuracy of the solution (output via PRSOL) depends on the error
tolerances E(i), for i = 1, 2, . . . , n. The user is strongly recommended to vary all tolerances to check the
accuracy of the parameters p and the solution y.

8 Further Comments

The time taken by the routine depends on the complexity of the system of differential equations and on
the number of iterations required. In practice, the integration of the differential system (1) is usually by
far the most costly process involved. The computing time for integrating the differential equations can
sometimes depend critically on the quality of the initial estimates for the parameters p. If it seems that
too much computing time is required and, in particular, if the values of the residuals (output in MONIT)
are much larger than expected given the user’s knowledge of the expected solution, then the coding of
the subroutines FCN, EQN, RANGE and BC should be checked for errors. If no errors can be found
then an independent attempt should be made to improve the initial estimates p.

In the case of an error exit in the integration of the differential system indicated by IFAIL = 4, 5, 9
or 10 the user is strongly recommended to perform trial integrations with D02PDF to determine the
effects of changes of the local error tolerances and of changes to the initial choice of the parameters pi,
for i = 1, 2 . . . , m (that is the initial choice of p).

It is possible that by following the advice given in Section 6 an error exit with IFAIL = 7, 8, 9, 10 or
11 might be followed by one with IFAIL = 12 (or vice-versa) where the advice given is the opposite. If
the user is unable to refine the choice of DP(i), for i = 1, 2, . . . , n, such that both these types of exits are
avoided then the problem should be rescaled if possible or the method must be abandoned.

The choice of the ‘floor’ values PF(i), for i = 1, 2, . . . , m, may be critical in the convergence of the Newton
iteration. For each value i, the initial choice of pi and the choice of PF(i) should not both be very small
unless it is expected that the final parameter pi will be very small and that it should be determined
accurately in a relative sense.

For many problems it is critical that a good initial estimate be found for the parameters p or the iteration
will not converge or may even break down with an error exit. There are many mathematical techniques

D02SAF.12 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02SAF

which obtain good initial estimates for p in simple cases but which may fail to produce useful estimates
in harder cases. If no such technique is available it is recommended that the user try a continuation
(homotopy) technique preferably based on a physical parameter (e.g., the Reynolds or Prandtl number is
often a suitable continuation parameter). In a continuation method a sequence of problems is solved, one
for each choice of the continuation parameter, starting with the problem of interest. At each stage the
parameters p calculated at earlier stages are used to compute a good initial estimate for the parameters
at the current stage (see Hall and Watt [1] for more details).

9 Example

The following example program is intended to illustrate the use of the break-point and equation solving
facilities of D02SAF. Most of the facilities which are common to D02SAF and D02HBF are illustrated in
the example in the specification of D02HBF (which should also be consulted).

The program solves a projectile problem in two media determining the position of change of media, p3,
and the gravity and viscosity in the second medium (p2 represents gravity and p4 represents viscosity).

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* D02SAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER N, M, NPOINT, IWP, NMMAX, IW1, IW2, N1
PARAMETER (N=3,M=4,NPOINT=3,IWP=NPOINT,NMMAX=M,IW1=NMMAX,

+ IW2=3*M+23,N1=N)
INTEGER NOUT
PARAMETER (NOUT=6)

* .. Scalars in Common ..
real XEND
INTEGER ICAP

* .. Local Scalars ..
real YMAX
INTEGER I, ICOUNT, IFAIL, J

* .. Local Arrays ..
real DP(M), E(N), P(M), PE(M), PF(M), W(IW1,IW2),

+ WP(IWP,6)
* .. External Functions ..

LOGICAL CONSTR
EXTERNAL CONSTR

* .. External Subroutines ..
EXTERNAL BC, D02SAF, D02SAS, EQN, FCN, PRSOL, RANGE,

+ X04ABF
* .. Common blocks ..

COMMON /ENDDAT/XEND, ICAP
* .. Executable Statements ..

WRITE (NOUT,*) ’D02SAF Example Program Results’
ICAP = 0
ICOUNT = 0
YMAX = 0.0e0
XEND = 5.0e0
DO 20 I = 1, M

PE(I) = 1.0e-3
PF(I) = 1.0e-6
DP(I) = 0.0e0

20 CONTINUE

[NP3390/19/pdf] D02SAF.13

D02SAF D02 – Ordinary Differential Equations

DO 40 I = 1, N
E(I) = 1.0e-5

40 CONTINUE
CALL X04ABF(1,NOUT)
DO 80 I = 1, NPOINT - 1

DO 60 J = 1, 3
WP(I,J) = 0.0e0

60 CONTINUE
80 CONTINUE

P(1) = 1.2e0
P(2) = 0.032e0
P(3) = 2.5e0
P(4) = 0.02e0
IFAIL = 1

*
* * To obtain monitoring information, replace the name D02SAS
* by D02HBX in the next statement and declare D02HBX as external *
*

CALL D02SAF(P,M,N,N1,PE,PF,E,DP,NPOINT,WP,IWP,ICOUNT,RANGE,BC,FCN,
+ EQN,CONSTR,YMAX,D02SAS,PRSOL,W,IW1,IW2,IFAIL)

*
IF (IFAIL.NE.0) THEN

WRITE (NOUT,99999) ’IFAIL = ’, IFAIL
IF (IFAIL.GE.4) THEN

IF (IFAIL.LE.12) WRITE (NOUT,99998) ’WP(NPOINT,1) = ’,
+ WP(NPOINT,1)

IF (IFAIL.LE.6) THEN
WRITE (NOUT,99998) ’WP(1,5) = ’, WP(1,5)
WRITE (NOUT,99997) ’W(.,1) ’, (W(I,1),I=1,N)

END IF
END IF

END IF
STOP

*
99999 FORMAT (1X,A,I3)
99998 FORMAT (1X,A,F10.4)
99997 FORMAT (1X,A,10e10.3)

END
*

SUBROUTINE EQN(F,Q,P,M)
* .. Scalar Arguments ..

INTEGER M, Q
* .. Array Arguments ..

real F(Q), P(M)
* .. Executable Statements ..

F(1) = 0.02e0 - P(4) - 1.0e-5*P(3)
RETURN
END

*
SUBROUTINE FCN(X,Y,F,N,P,M,I)

* .. Scalar Arguments ..
real X
INTEGER I, M, N

* .. Array Arguments ..
real F(N), P(M), Y(N)

* .. Intrinsic Functions ..
INTRINSIC COS, TAN

D02SAF.14 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02SAF

* .. Executable Statements ..
F(1) = TAN(Y(3))
IF (I.EQ.1) THEN

F(2) = -0.032e0*TAN(Y(3))/Y(2) - 0.02e0*Y(2)/COS(Y(3))
F(3) = -0.032e0/Y(2)**2

ELSE
F(2) = -P(2)*TAN(Y(3))/Y(2) - P(4)*Y(2)/COS(Y(3))
F(3) = -P(2)/Y(2)**2

END IF
RETURN
END

*
SUBROUTINE BC(F,G,P,M,N)

* .. Scalar Arguments ..
INTEGER M, N

* .. Array Arguments ..
real F(N), G(N), P(M)

* .. Executable Statements ..
F(1) = 0.0e0
F(2) = 0.5e0
F(3) = P(1)
G(1) = 0.0e0
G(2) = 0.45e0
G(3) = -1.2e0
RETURN
END

*
SUBROUTINE RANGE(X,NPOINT,P,M)

* .. Scalar Arguments ..
INTEGER M, NPOINT

* .. Array Arguments ..
real P(M), X(NPOINT)

* .. Scalars in Common ..
real XEND
INTEGER ICAP

* .. Common blocks ..
COMMON /ENDDAT/XEND, ICAP

* .. Executable Statements ..
X(1) = 0.0e0
X(2) = P(3)
X(3) = XEND
RETURN
END

*
SUBROUTINE PRSOL(X,Y,N)

* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)

* .. Scalar Arguments ..
real X
INTEGER N

* .. Array Arguments ..
real Y(N)

* .. Scalars in Common ..
real XEND
INTEGER ICAP

[NP3390/19/pdf] D02SAF.15

D02SAF D02 – Ordinary Differential Equations

* .. Local Scalars ..
INTEGER I

* .. Intrinsic Functions ..
INTRINSIC ABS

* .. Common blocks ..
COMMON /ENDDAT/XEND, ICAP

* .. Executable Statements ..
IF (ICAP.NE.1) THEN

ICAP = 1
WRITE (NOUT,*)
WRITE (NOUT,*) ’ X Y(1) Y(2) Y(3)’

END IF
WRITE (NOUT,99999) X, (Y(I),I=1,N)
X = X + 0.5e0
IF (ABS(X-XEND).LT.0.25e0) X = XEND
RETURN

*
99999 FORMAT (1X,F9.3,3F10.4)

END
*

LOGICAL FUNCTION CONSTR(P,M)
* .. Scalar Arguments ..

INTEGER M
* .. Array Arguments ..

real P(M)
* .. Local Scalars ..

INTEGER I
* .. Executable Statements ..

CONSTR = .TRUE.
DO 20 I = 1, M

IF (P(I).LT.0.0e0) CONSTR = .FALSE.
20 CONTINUE

IF (P(3).GT.5.0e0) CONSTR = .FALSE.
RETURN
END

9.2 Program Data

None.

9.3 Program Results

D02SAF Example Program Results

X Y(1) Y(2) Y(3)
0.000 0.0000 0.5000 1.1753
0.500 1.0881 0.4127 1.0977
1.000 1.9501 0.3310 0.9802
1.500 2.5769 0.2582 0.7918
2.000 2.9606 0.2019 0.4796
2.500 3.0958 0.1773 0.0245
3.000 2.9861 0.1935 -0.4353
3.500 2.6289 0.2409 -0.7679
4.000 2.0181 0.3047 -0.9767
4.500 1.1454 0.3759 -1.1099
5.000 0.0000 0.4500 -1.2000

D02SAF.16 (last) [NP3390/19/pdf]

