
D03 – Partial Differential Equations

D03PKF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

D03PKF integrates a system of linear or nonlinear, first-order, time-dependent partial differential
equations (PDEs) in one space variable, with scope for coupled ordinary differential equations (ODEs).
The spatial discretisation is performed using the Keller box scheme and the method of lines is employed
to reduce the PDEs to a system of ODEs. The resulting system is solved using a Backward Differentiation
Formula (BDF) method or a Theta method (switching between Newton’s method and functional
iteration).

2 Specification

SUBROUTINE D03PKF(NPDE, TS, TOUT, PDEDEF, BNDARY, U, NPTS, X,
1 NLEFT, NCODE, ODEDEF, NXI, XI, NEQN, RTOL, ATOL,
2 ITOL, NORM, LAOPT, ALGOPT, W, NW, IW, NIW,
3 ITASK, ITRACE, IND, IFAIL)
INTEGER NPDE, NPTS, NLEFT, NCODE, NXI, NEQN, ITOL, NW,
1 IW(NIW), NIW, ITASK, ITRACE, IND, IFAIL
real TS, TOUT, U(NEQN), X(NPTS), XI(∗), RTOL(∗),
1 ATOL(∗), ALGOPT(30), W(NW)
CHARACTER∗1 NORM, LAOPT
EXTERNAL PDEDEF, BNDARY, ODEDEF

3 Description

D03PKF integrates the system of first-order PDEs and coupled ODEs

Gi(x, t, U, Ux, Ut, V, V̇) = 0, i = 1, 2, . . . ,NPDE, a ≤ x ≤ b, t ≥ t0, (1)

Fi(t, V, V̇ , ξ, U∗, U∗
x , U∗

t) = 0, i = 1, 2, . . . ,NCODE. (2)

In the PDE part of the problem given by (1), the functions Gi must have the general form

Gi =
NPDE∑
j=1

Pi,j

∂Uj

∂t
+

NCODE∑
j=1

Qi,j V̇j + Ri = 0, i = 1, 2, . . . ,NPDE, (3)

where Pi,j , Qi,j and Ri depend on x, t, U, Ux and V .

The vector U is the set of PDE solution values

U(x, t) = [U1(x, t), . . . , UNPDE(x, t)]T ,

and the vector Ux is the partial derivative with respect to x. The vector V is the set of ODE solution
values

V (t) = [V1(t), . . . , VNCODE(t)]
T ,

and V̇ denotes its derivative with respect to time.

In the ODE part given by (2), ξ represents a vector of nξ spatial coupling points at which the ODEs are
coupled to the PDEs. These points may or may not be equal to some of the PDE spatial mesh points.
U∗, U∗

x and U∗
t are the functions U , Ux and Ut evaluated at these coupling points. Each Fi may only

depend linearly on time derivatives. Hence equation (2) may be written more precisely as

F = A − BV̇ − CU∗
t , (4)

[NP3390/19/pdf] D03PKF.1

D03PKF D03 – Partial Differential Equations

where F = [F1, . . . , FNCODE]
T , A is a vector of length NCODE, B is an NCODE by NCODE matrix, C

is an NCODE by (nξ× NPDE) matrix. The entries in A, B and C may depend on t, ξ, U∗, U∗
x and V . In

practice the user only needs to supply a vector of information to define the ODEs and not the matrices
B and C. (See Section 5 for the specification of the user-supplied subroutine ODEDEF.)

The integration in time is from t0 to tout, over the space interval a ≤ x ≤ b, where a = x1 and b = xNPTS

are the leftmost and rightmost points of a user-defined mesh x1, x2, . . . , xNPTS.

The PDE system which is defined by the functions Gi must be specified in the user-supplied subroutine
PDEDEF.

The initial values of the functions U(x, t) and V (t) must be given at t = t0.

For a first-order system of PDEs, only one boundary condition is required for each PDE component
Ui. The NPDE boundary conditions are separated into NLEFT at the left-hand boundary x = a, and
NRIGHT at the right-hand boundary x = b, such that NLEFT + NRIGHT = NPDE. The position
of the boundary condition for each component should be chosen with care; the general rule is that if
the characteristic direction of Ui at the left-hand boundary (say) points into the interior of the solution
domain, then the boundary condition for Ui should be specified at the left-hand boundary. Incorrect
positioning of boundary conditions generally results in initialisation or integration difficulties in the
underlying time integration routines.

The boundary conditions have the form:

GL
i (x, t, U, Ut,V, V̇) = 0 at x = a, i = 1, 2, . . . ,NLEFT, (5)

at the left-hand boundary, and

GR
i (x, t, U, Ut,V, V̇) = 0 at x = b, i = 1, 2, . . . ,NRIGHT, (6)

at the right-hand boundary.

Note that the functions GL
i and GR

i must not depend on Ux, since spatial derivatives are not determined
explicitly in the Keller box scheme. If the problem involves derivative (Neumann) boundary conditions
then it is generally possible to restate such boundary conditions in terms of permissible variables. Also
note that GL

i and GR
i must be linear with respect to time derivatives, so that the boundary conditions

have the general form:
NPDE∑
j=1

EL
i,j

∂Uj

∂t
+

NCODE∑
j=1

HL
i,j V̇j + SL

i = 0, i = 1, 2, . . . ,NLEFT, (7)

at the left-hand boundary, and
NPDE∑
j=1

ER
i,j

∂Uj

∂t
+

NCODE∑
j=1

HR
i,j V̇j + SR

i = 0, i = 1, 2, . . . ,NRIGHT, (8)

at the right-hand boundary, where EL
i,j , ER

i,j , HL
i,j , HR

i,j , SL
i and SR

i depend on x, t, U and V only.

The boundary conditions must be specified in a subroutine BNDARY provided by the user.

The problem is subject to the following restrictions:

(i) Pi,j , Qi,j and Ri must not depend on any time derivatives;
(ii) t0 < tout, so that integration is in the forward direction;
(iii) The evaluation of the function Gi is done approximately at the mid-points of the mesh X(i), for

i = 1, 2, . . . ,NPTS, by calling the routine PDEDEF for each mid-point in turn. Any discontinuities
in the function must therefore be at one or more of the mesh points x1, x2, . . . , xNPTS;

(iv) At least one of the functions Pi,j must be non-zero so that there is a time derivative present in the
PDE problem;

The algebraic-differential equation system which is defined by the functions Fi must be specified in the
user-supplied subroutine ODEDEF. The user must also specify the coupling points ξ in the array XI.

The parabolic equations are approximated by a system of ODEs in time for the values of Ui at mesh
points. In this method of lines approach the Keller box scheme [4] is applied to each PDE in the space
variable only, resulting in a system of ODEs in time for the values of Ui at each mesh point. In total
there are NPDE × NPTS+NCODE ODEs in time direction. This system is then integrated forwards in
time using a Backward Differentiation Formula (BDF) or a Theta method.

D03PKF.2 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PKF

4 References

[1] Berzins M (1990) Developments in the NAG Library software for parabolic equations Scientific
Software Systems (ed J C Mason and M G Cox) Chapman and Hall 59–72

[2] Berzins M, Dew P M and Furzeland R M (1989) Developing software for time-dependent problems
using the method of lines and differential-algebraic integrators Appl. Numer. Math. 5 375–397

[3] Berzins M and Furzeland R M (1992) An adaptive theta method for the solution of stiff and nonstiff
differential equations Appl. Numer. Math. 9 1–19

[4] Keller H B (1970) A new difference scheme for parabolic problems Numerical Solutions of Partial
Differential Equations (ed J Bramble) 2 Academic Press 327–350

[5] Pennington S V and Berzins M (1994) New NAG Library software for first-order partial differential
equations ACM Trans. Math. Softw. 20 63–99

5 Parameters

1: NPDE — INTEGER Input

On entry: the number of PDEs to be solved.

Constraint: NPDE ≥ 1.

2: TS — real Input/Output

On entry: the initial value of the independent variable t.

Constraint: TS < TOUT.

On exit: the value of t corresponding to the solution in U. Normally TS = TOUT.

3: TOUT — real Input

On entry: the final value of t to which the integration is to be carried out.

4: PDEDEF — SUBROUTINE, supplied by the user. External Procedure

PDEDEF must evaluate the functions Gi which define the system of PDEs. PDEDEF is called
approximately midway between each pair of mesh points in turn by D03PKF.

Its specification is:

SUBROUTINE PDEDEF(NPDE, T, X, U, UT, UX, NCODE, V, VDOT, RES, IRES)
INTEGER NPDE, NCODE, IRES
real T, X, U(NPDE), UT(NPDE), UX(NPDE), V(∗),
1 VDOT(∗), RES(NPDE)

1: NPDE — INTEGER Input
On entry: the number of PDEs in the system.

2: T — real Input
On entry: the current value of the independent variable t.

3: X — real Input
On entry: the current value of the space variable x.

4: U(NPDE) — real array Input
On entry: U(i) contains the value of the component Ui(x, t), for i = 1, 2, . . . ,NPDE.

5: UT(NPDE) — real array Input
On entry: UT(i) contains the value of the component ∂Ui(x,t)

∂t , for i = 1, 2, . . . ,NPDE.

[NP3390/19/pdf] D03PKF.3

D03PKF D03 – Partial Differential Equations

6: UX(NPDE) — real array Input
On entry: UX(i) contains the value of the component ∂Ui(x,t)

∂x , for i = 1, 2, . . . ,NPDE.

7: NCODE — INTEGER Input
On entry: the number of coupled ODEs in the system.

8: V(∗) — real array Input
On entry: V(i) contains the value of component Vi(t), for i = 1, 2, . . . ,NCODE.

9: VDOT(∗) — real array Input
On entry: VDOT(i) contains the value of component V̇i(t), for i = 1, 2, . . . ,NCODE.

10: RES(NPDE) — real array Output
On exit: RES(i) must contain the ith component of G, for i = 1, 2, . . . ,NPDE, where G is
defined as

Gi =
NPDE∑
j=1

Pi,j

∂Uj

∂t
+

NCODE∑
j=1

Qi,j V̇j , (9)

i.e., only terms depending explicitly on time derivatives, or

Gi =
NPDE∑
j=1

Pi,j

∂Uj

∂t
+

NCODE∑
j=1

Qi,j V̇j + Ri, (10)

i.e., all terms in equation (3).

The definition of G is determined by the input value of IRES.

11: IRES — INTEGER Input/Output
On entry: the form of Gi that must be returned in the array RES. If IRES = −1, then equation
(9) above must be used. If IRES = 1, then equation (10) above must be used.

On exit: should usually remain unchanged. However, the user may set IRES to force the
integration routine to take certain actions, as described below:

IRES = 2
indicates to the integrator that control should be passed back immediately to the calling
(sub)program with the error indicator (IFAIL) set to 6.

IRES = 3
indicates to the integrator that the current time step should be abandoned and a smaller
time step used instead. The user may wish to set IRES = 3 when a physically meaningless
input or output value has been generated. If the user consecutively sets IRES = 3, then
D03PKF returns to the calling (sub)program with the error indicator (IFAIL) set to 4.

PDEDEF must be declared as EXTERNAL in the (sub)program from which D03PKF is called.
Parameters denoted as Input must not be changed by this procedure.

5: BNDARY — SUBROUTINE, supplied by the user. External Procedure

BNDARY must evaluate the functions GL
i and GR

i which describe the boundary conditions, as given
in (5) and (6).

D03PKF.4 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PKF

Its specification is:

SUBROUTINE BNDARY(NPDE, T, IBND, NOBC, U, UT, NCODE, V, VDOT, RES,
1 IRES)
INTEGER NPDE, IBND, NOBC, NCODE, IRES
real T, U(NPDE), UT(NPDE), V(∗), VDOT(∗), RES(NOBC)

1: NPDE — INTEGER Input
On entry: the number of PDEs in the system.

2: T — real Input
On entry: the current value of the independent variable t.

3: IBND — INTEGER Input
On entry: specifies which boundary conditions are to be evaluated. If IBND = 0, then
BNDARY must compute the left-hand boundary condition at x = a. If IBND �= 0, then
BNDARY must compute the right-hand boundary condition at x = b.

4: NOBC — INTEGER Input
On entry: NOBC specifies the number of boundary conditions at the boundary specified by
IBND.

5: U(NPDE) — real array Input
On entry: U(i) contains the value of the component Ui(x, t) at the boundary specified by
IBND, for i = 1, 2, . . . ,NPDE.

6: UT(NPDE) — real array Input

On entry: UT(i) contains the value of the component ∂Ui(x,t)
∂t at the boundary specified by

IBND, for i = 1, 2, . . . ,NPDE.

7: NCODE — INTEGER Input
On entry: the number of coupled ODEs in the system.

8: V(∗) — real array Input
On entry: V(i) contains the value of component Vi(t), for i = 1, 2, . . . ,NCODE.

9: VDOT(∗) — real array Input
On entry: VDOT(i) contains the value of component V̇i(t), for i = 1, 2, . . . ,NCODE.

Note. VDOT(i), for i = 1, 2, . . . ,NCODE, may only appear linearly as in (7) and (8).

10: RES(NOBC) — real array Output
On exit: RES(i) must contain the ith component of GL or GR, depending on the value of
IBND, for i = 1, 2, . . . ,NOBC, where GL is defined as

GL
i =

NPDE∑
j=1

EL
i,j

∂Uj

∂t
+

NCODE∑
j=1

HL
i,j V̇j , (11)

i.e., only terms depending explicitly on time derivatives, or

GL
i =

NPDE∑
j=1

EL
i,j

∂Uj

∂t
+

NCODE∑
j=1

HL
i,j V̇j + SL

i , (12)

i.e., all terms in equation (7), and similarly for GR
i .

The definitions of GL and GR are determined by the input value of IRES.

[NP3390/19/pdf] D03PKF.5

D03PKF D03 – Partial Differential Equations

11: IRES — INTEGER Input/Output
On entry: the form of GL

i (or GR
i) that must be returned in the array RES. If IRES = −1,

then equation (11) above must be used. If IRES = 1, then equation (12) above must be used.

On exit: should usually remain unchanged. However, the user may set IRES to force the
integration routine to take certain actions, as described below:

IRES = 2
indicates to the integrator that control should be passed back immediately to the calling
(sub)program with the error indicator (IFAIL) set to 6.

IRES = 3
indicates to the integrator that the current time step should be abandoned and a smaller
time step used instead. The user may wish to set IRES = 3 when a physically meaningless
input or output value has been generated. If the user consecutively sets IRES = 3, then
D03PKF returns to the calling (sub)program with the error indicator (IFAIL) set to 4.

BNDARY must be declared as EXTERNAL in the (sub)program from which D03PKF is called.
Parameters denoted as Input must not be changed by this procedure.

6: U(NEQN) — real array Input/Output

On entry: the initial values of the dependent variables defined as follows:

U(NPDE × (j−1)+i) contain Ui(xj , t0), for i = 1, 2, . . . ,NPDE; j = 1, 2, . . . ,NPTS and

U(NPTS×NPDE+i) contain Vi(t0), for i = 1, 2, . . . ,NCODE.

On exit: the computed solution Ui(xj , t), for i = 1, 2, . . . ,NPDE; j = 1, 2, . . . ,NPTS, and Vk(t), for
k = 1, 2, . . . ,NCODE, evaluated at t = TS.

7: NPTS — INTEGER Input

On entry: the number of mesh points in the interval [a, b].

Constraint: NPTS ≥ 3.

8: X(NPTS) — real array Input

On entry: the mesh points in the space direction. X(1) must specify the left-hand boundary, a, and
X(NPTS) must specify the right-hand boundary, b.

Constraint: X(1) < X(2) < . . . < X(NPTS).

9: NLEFT — INTEGER Input

On entry: the number of boundary conditions at the left-hand mesh point X(1).

Constraint: 0 ≤ NLEFT ≤ NPDE.

10: NCODE — INTEGER Input

On entry: the number of coupled ODE components.

Constraint: NCODE ≥ 0.

11: ODEDEF — SUBROUTINE, supplied by the user. External Procedure

ODEDEF must evaluate the functions F , which define the system of ODEs, as given in (4). If the
user wishes to compute the solution of a system of PDEs only (i.e., NCODE = 0), ODEDEF must
be the dummy routine D03PEK. (D03PEK is included in the NAG Fortran Library; however, its
name may be implementation-dependent: see the Users’ Note for your implementation for details.)

D03PKF.6 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PKF

Its specification is:

SUBROUTINE ODEDEF(NPDE, T, NCODE, V, VDOT, NXI, XI, UCP, UCPX,
1 UCPT, F, IRES)
INTEGER NPDE, NCODE, NXI, IRES
real T, V(∗), VDOT(∗), XI(∗), UCP(NPDE,∗),
1 UCPX(NPDE,∗), UCPT(NPDE,∗), F(∗)

1: NPDE — INTEGER Input
On entry: the number of PDEs in the system.

2: T — real Input
On entry: the current value of the independent variable t.

3: NCODE — INTEGER Input
On entry: the number of coupled ODEs in the system.

4: V(∗) — real array Input
On entry: V(i) contains the value of component Vi(t), for i = 1, 2, . . . ,NCODE.

5: VDOT(∗) — real array Input
On entry: VDOT(i) contains the value of component V̇i(t), for i = 1, 2, . . . ,NCODE.

6: NXI — INTEGER Input
On entry: the number of ODE/PDE coupling points.

7: XI(∗) — real array Input
On entry: XI(i) contains the ODE/PDE coupling point ξi, for i = 1, 2, . . . ,NXI.

8: UCP(NPDE,∗) — real array Input
On entry: UCP(i, j) contains the value of Ui(x, t) at the coupling point x = ξj , for
i = 1, 2, . . . ,NPDE; j = 1, 2, . . . ,NXI.

9: UCPX(NPDE,∗) — real array Input
On entry: UCPX(i, j) contains the value of ∂Ui(x,t)

∂x at the coupling point x = ξj , for
i = 1, 2, . . . ,NPDE; j = 1, 2, . . . ,NXI.

10: UCPT(NPDE,∗) — real array Input
On entry: UCPT(i, j) contains the value of ∂Ui(x,t)

∂t at the coupling point x = ξj , for
i = 1, 2, . . . ,NPDE; j = 1, 2, . . . ,NXI.

11: F(∗) — real array Output
On exit: F(i) must contain the ith component of F , for i = 1, 2, . . . ,NCODE, where F is
defined as

F = −BV̇ − CU∗
t , (13)

i.e., only terms depending explicitly on time derivatives, or

F = A − BV̇ − CU∗
t , (14)

i.e., all terms in equation (4). The definition of F is determined by the input value of IRES.

12: IRES — INTEGER Input/Output
On entry: the form of F that must be returned in the array F. If IRES = −1, then equation
(13) above must be used. If IRES = 1, then equation (14) above must be used.

On exit: should usually remain unchanged. However, the user may reset IRES to force the
integration routine to take certain actions, as described below:

IRES = 2
indicates to the integrator that control should be passed back immediately to the calling
(sub)program with the error indicator (IFAIL) set to 6.

[NP3390/19/pdf] D03PKF.7

D03PKF D03 – Partial Differential Equations

IRES = 3
indicates to the integrator that the current time step should be abandoned and a smaller
time step used instead. The user may wish to set IRES = 3 when a physically meaningless
input or output value has been generated. If the user consecutively sets IRES = 3, then
D03PKF returns to the calling (sub)program with the error indicator (IFAIL) set to 4.

ODEDEF must be declared as EXTERNAL in the (sub)program from which D03PKF is called.
Parameters denoted as Input must not be changed by this procedure.

12: NXI — INTEGER Input

Constraints:

NXI = 0 for NCODE = 0.
NXI ≥ 0 for NCODE > 0.

13: XI(∗) — real array Input

Note: the dimension of the array XI must be at least max(1,NXI).

On entry: XI(i), i = 1, 2, . . . ,NXI, must be set to the ODE/PDE coupling points, ξi.

Constraint: X(1) ≤ XI(1) < XI(2) < . . . < XI(NXI) ≤ X(NPTS).

14: NEQN — INTEGER Input

On entry: the number of ODEs in the time direction.

Constraint: NEQN = NPDE × NPTS+NCODE.

15: RTOL(∗) — real array Input

Note: the dimension of the array RTOL must be at least 1 if ITOL = 1 or 2 and at least NEQN if
ITOL = 3 or 4.

On entry: the relative local error tolerance.

Constraint: RTOL(i) ≥ 0 for all relevant i.

16: ATOL(∗) — real array Input

Note: the dimension of the array ATOL must be at least 1 if ITOL = 1 or 3 and at least NEQN if
ITOL = 2 or 4.

On entry: the absolute local error tolerance.

Constraints: ATOL(i) ≥ 0 for all relevant i.

Corresponding elements of ATOL and RTOL should not both be 0.0.

17: ITOL — INTEGER Input

On entry: a value to indicate the form of the local error test. ITOL indicates to D03PKF whether
to interpret either or both of RTOL or ATOL as a vector or scalar. The error test to be satisfied is
‖ei/wi‖ < 1.0, where wi is defined as follows:

ITOL RTOL ATOL wi

1 scalar scalar RTOL(1)× |U(i)|+ATOL(1)
2 scalar vector RTOL(1)× |U(i)|+ATOL(i)
3 vector scalar RTOL(i)× |U(i)|+ATOL(1)
4 vector vector RTOL(i)× |U(i)|+ATOL(i)

D03PKF.8 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PKF

In the above, ei denotes the estimated local error for the ith component of the coupled PDE/ODE
system in time, U(i), for i = 1, 2, . . . ,NEQN.

The choice of norm used is defined by the parameter NORM, see below.

Constraint: 1 ≤ ITOL ≤ 4.

18: NORM — CHARACTER*1 Input

On entry: the type of norm to be used. Two options are available:

’M’ – maximum norm.
’A’ – averaged L2 norm.

If Unorm denotes the norm of the vector U of length NEQN, then for the averaged L2 norm

Unorm =

√√√√ 1
NEQN

NEQN∑
i=1

(U(i)/wi)2,

while for the maximum norm
Unorm = max

i
|U(i)/wi|.

See the description of the ITOL parameter for the formulation of the weight vector w.

Constraint: NORM = ’M’ or ’A’.

19: LAOPT — CHARACTER*1 Input

On entry: the type of matrix algebra required. The possible choices are:

’F’ – full matrix routines to be used;
’B’ – banded matrix routines to be used;
’S’ – sparse matrix routines to be used.

Constraint: LAOPT = ’F’, ’B’ or ’S’.

Note. The user is recommended to use the banded option when no coupled ODEs are present (i.e.,
NCODE = 0).

20: ALGOPT(30) — real array Input

On entry: ALGOPT may be set to control various options available in the integrator. If the user
wishes to employ all the default options, then ALGOPT(1) should be set to 0.0. Default values will
also be used for any other elements of ALGOPT set to zero. The permissible values, default values,
and meanings are as follows:

ALGOPT(1) selects the ODE integration method to be used. If ALGOPT(1) = 1.0, a BDF method
is used and if ALGOPT(1) = 2.0, a Theta method is used.

The default value is ALGOPT(1) = 1.0.

If ALGOPT(1) = 2.0, then ALGOPT(i), for i = 2, 3, 4 are not used.

ALGOPT(2) specifies the maximum order of the BDF integration formula to be used. ALGOPT(2)
may be 1.0, 2.0, 3.0, 4.0 or 5.0.

The default value is ALGOPT(2) = 5.0.

ALGOPT(3) specifies what method is to be used to solve the system of nonlinear equations arising
on each step of the BDF method. If ALGOPT(3) = 1.0 a modified Newton iteration is used and if
ALGOPT(3) = 2.0 a functional iteration method is used. If functional iteration is selected and the
integrator encounters difficulty, then there is an automatic switch to the modified Newton iteration.

The default value is ALGOPT(3) = 1.0.

[NP3390/19/pdf] D03PKF.9

D03PKF D03 – Partial Differential Equations

ALGOPT(4) specifies whether or not the Petzold error test is to be employed. The Petzold error
test results in extra overhead but is more suitable when algebraic equations are present, such as
Pi,j = 0.0, for j = 1, 2, . . . ,NPDE for some i or when there is no V̇i(t) dependence in the coupled
ODE system. If ALGOPT(4) = 1.0, then the Petzold test is used. If ALGOPT(4) = 2.0, then the
Petzold test is not used.

The default value is ALGOPT(4) = 1.0.

If ALGOPT(1) = 1.0, then ALGOPT(i), for i = 5, 6, 7 are not used.

ALGOPT(5), specifies the value of Theta to be used in the Theta integration method.

0.51 ≤ ALGOPT(5) ≤ 0.99.

The default value is ALGOPT(5) = 0.55.

ALGOPT(6) specifies what method is to be used to solve the system of nonlinear equations arising
on each step of the Theta method. If ALGOPT(6) = 1.0, a modified Newton iteration is used and
if ALGOPT(6) = 2.0, a functional iteration method is used.

The default value is ALGOPT(6) = 1.0.

ALGOPT(7) specifies whether or not the integrator is allowed to switch automatically between
modified Newton and functional iteration methods in order to be more efficient. If ALGOPT(7) =
1.0, then switching is allowed and if ALGOPT(7) = 2.0, then switching is not allowed.

The default value is ALGOPT(7) = 1.0.

ALGOPT(11) specifies a point in the time direction, tcrit, beyond which integration must not be
attempted. The use of tcrit is described under the parameter ITASK. If ALGOPT(1) �= 0.0, a value
of 0.0 for ALGOPT(11), say, should be specified even if ITASK subsequently specifies that tcrit will
not be used.

ALGOPT(12) specifies the minimum absolute step size to be allowed in the time integration. If this
option is not required, ALGOPT(12) should be set to 0.0.

ALGOPT(13) specifies the maximum absolute step size to be allowed in the time integration. If
this option is not required, ALGOPT(13) should be set to 0.0.

ALGOPT(14) specifies the initial step size to be attempted by the integrator. If ALGOPT(14) =
0.0, then the initial step size is calculated internally.

ALGOPT(15) specifies the maximum number of steps to be attempted by the integrator in any one
call. If ALGOPT(15) = 0.0, then no limit is imposed.

ALGOPT(23) specifies what method is to be used to solve the nonlinear equations at the initial
point to initialise the values of U , Ut, V and V̇ . If ALGOPT(23) = 1.0, a modified Newton iteration
is used and if ALGOPT(23) = 2.0, functional iteration is used.

The default value is ALGOPT(23) = 1.0.

ALGOPT(29) and ALGOPT(30) are used only for the sparse matrix algebra option, i.e., LAOPT
= ’S’.

ALGOPT(29) governs the choice of pivots during the decomposition of the first Jacobian matrix. It
should lie in the range 0.0 < ALGOPT(29) < 1.0, with smaller values biasing the algorithm towards
maintaining sparsity at the expense of numerical stability. If ALGOPT(29) lies outside this range
then the default value is used. If the routines regard the Jacobian matrix as numerically singular
then increasing ALGOPT(29) towards 1.0 may help, but at the cost of increased fill-in.

The default value is ALGOPT(29) = 0.1.

D03PKF.10 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PKF

ALGOPT(30) is used as a relative pivot threshold during subsequent Jacobian decompositions (see
ALGOPT(29)) below which an internal error is invoked. ALGOPT(30) must be greater than zero,
otherwise the default value is used. If ALGOPT(30) is greater than 1.0 no check is made on the
pivot size, and this may be a necessary option if the Jacobian is found to be numerically singular
(see ALGOPT(29)).

The default value is ALGOPT(30) = 0.0001.

21: W(NW) — real array Workspace
22: NW — INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which D03PKF is
called. Its size depends on the type of matrix algebra selected:

LAOPT = ’F’,
NW ≥ NEQN × NEQN + NEQN + NWKRES + LENODE,

LAOPT = ’B’,
NW ≥ (2×ML+MU+2) × NEQN + NWKRES + LENODE,

LAOPT = ’S’,
NW ≥ 4 × NEQN + 11 × NEQN/2 + 1 + NWKRES + LENODE,

where ML and MU are the lower and upper half bandwidths, given by ML = NPDE + NLEFT−1,
MU = 2 × NPDE − NLEFT−1 for problems involving PDEs only, and ML = MU = NEQN−1, for
coupled PDE/ODE problems.

NWKRES = NPDE × (6×NXI+3×NPDE+NPTS+15) + NXI + NCODE + 7 × NPTS+2

when NCODE > 0, and NXI > 0.

NWKRES = NPDE × (3×NPDE+NPTS+21) + NCODE + 7 ×NPTS+3

when NCODE > 0, and NXI = 0.

NWKRES = NPDE × (3×NPDE+NPTS+21) + 7 × NPTS+4

when NCODE = 0.

LENODE = (6+int(ALGOPT(2))) × NEQN+50, when the BDF method is used and,

LENODE = 9 × NEQN+50, when the Theta method is used.

Note. When using the sparse option, the value of NW may be too small when supplied to the
integrator. An estimate of the minimum size of NW is printed on the current error message unit if
ITRACE > 0 and the routine returns with IFAIL = 15.

23: IW(NIW) — INTEGER array Output

On exit: the following components of the array IW concern the efficiency of the integration.

IW(1) contains the number of steps taken in time.

IW(2) contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves evaluating the PDE functions at all the mesh points, as well as one evaluation
of the functions in the boundary conditions.

IW(3) contains the number of Jacobian evaluations performed by the time integrator.

IW(4) contains the order of the ODE method last used in the time integration.

IW(5) contains the number of Newton iterations performed by the time integrator. Each iteration
involves residual evaluation of the resulting ODE system followed by a back-substitution using the
LU decomposition of the Jacobian matrix.

The rest of the array is used as workspace.

[NP3390/19/pdf] D03PKF.11

D03PKF D03 – Partial Differential Equations

24: NIW — INTEGER Input

On entry: the dimension of the array IW. Its size depends on the type of matrix algebra selected:

LAOPT = ’F’,
NIW ≥ 24,

LAOPT = ’B’,
NIW ≥ NEQN+24,

LAOPT = ’S’,
NIW ≥ 25 × NEQN+24.

Note. When using the sparse option, the value of NIW may be too small when supplied to the
integrator. An estimate of the minimum size of NIW is printed on the current error message unit if
ITRACE > 0 and the routine returns with IFAIL = 15.

25: ITASK — INTEGER Input

On entry: the task tp be performed by the ODE integrator. The permitted values of ITASK and
their meanings are detailed below:

ITASK = 1
normal computation of output values U at t = TOUT (by overshooting and interpolating).

ITASK = 2
take one step in the time direction and return.

ITASK = 3
stop at first internal integration point at or beyond t = TOUT.

ITASK = 4
normal computation of output values U at t = TOUT but without overshooting t = tcrit, where
tcrit is described under the parameter ALGOPT.

ITASK = 5
take one step in the time direction and return, without passing tcrit, where tcrit is described
under the parameter ALGOPT.

Constraint: 1 ≤ ITASK ≤ 5.

26: ITRACE — INTEGER Input

On entry: the level of trace information required from D03PKF and the underlying ODE solver as
follows:

If ITRACE ≤ −1, no output is generated.

If ITRACE = 0, only warning messages from the PDE solver are printed on the current error
message unit (see X04AAF).

If ITRACE = 1, then output from the underlying ODE solver is printed on the current advisory
message unit (see X04ABF). This output contains details of Jacobian entries, the nonlinear iteration
and the time integration during the computation of the ODE system.

If ITRACE = 2, then the output from the underlying ODE solver is similar to that produced when
ITRACE = 1, except that the advisory messages are given in greater detail.

If ITRACE ≥ 3, then the output from the underlying ODE solver is similar to that produced when
ITRACE = 2, except that the advisory messages are given in greater detail.

Users are advised to set ITRACE = 0, unless they are experienced with the subchapter D02M–N
of the NAG Fortran Library.

D03PKF.12 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PKF

27: IND — INTEGER Input/Output

On entry: IND must be set to 0 or 1.

IND = 0
starts or restarts the integration in time.

IND = 1
continues the integration after an earlier exit from the routine. In this case, only the parameters
TOUT and IFAIL should be reset between calls to D03PKF.

Constraint: 0 ≤ IND ≤ 1.

On exit: IND = 1.

28: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

On entry, (TOUT−TS) is too small,

or ITASK �= 1, 2, 3, 4 or 5,

or at least one of the coupling points defined in array XI is outside the interval
[X(1),X(NPTS)],

or NPTS < 3,

or NPDE < 1,

or NLEFT not in range 0 to NPDE,

or NORM �= ’A’ or ’M’,

or LAOPT �= ’F’, ’B’ or ’S’,

or ITOL �= 1, 2, 3 or 4,

or IND �= 0 or 1,

or incorrectly defined user mesh, i.e., X(i) ≥ X(i+1) for some i = 1, 2, . . . ,NPTS−1,
or NW or NIW are too small,

or NCODE and NXI are incorrectly defined,

or IND = 1 on initial entry to D03PKF,

or an element of RTOL or ATOL < 0.0,

or corresponding elements of ATOL and RTOL are both 0.0,

or NEQN �= NPDE × NPTS+NCODE.

IFAIL = 2

The underlying ODE solver cannot make any further progress, with the values of ATOL and
RTOL, across the integration range from the current point t = TS. The components of U contain
the computed values at the current point t = TS.

IFAIL = 3

In the underlying ODE solver, there were repeated error test failures on an attempted step, before
completing the requested task, but the integration was successful as far as t = TS. The problem
may have a singularity, or the error requirement may be inappropriate. Incorrect positioning of
boundary conditions may also result in this error.

[NP3390/19/pdf] D03PKF.13

D03PKF D03 – Partial Differential Equations

IFAIL = 4

In setting up the ODE system, the internal initialisation routine was unable to initialise the
derivative of the ODE system. This could be due to the fact that IRES was repeatedly set to
3 in one of the user-supplied subroutines PDEDEF, BNDARY or ODEDEF, when the residual in
the underlying ODE solver was being evaluated. Incorrect positioning of boundary conditions may
also result in this error.

IFAIL = 5

In solving the ODE system, a singular Jacobian has been encountered. The user should check their
problem formulation.

IFAIL = 6

When evaluating the residual in solving the ODE system, IRES was set to 2 in one of the user-
supplied subroutines PDEDEF, BNDARY or ODEDEF. Integration was successful as far as t =
TS.

IFAIL = 7

The values of ATOL and RTOL are so small that the routine is unable to start the integration in
time.

IFAIL = 8

In one of the user-supplied routines, PDEDEF, BNDARY or ODEDEF, IRES was set to an invalid
value.

IFAIL = 9

A serious error has occurred in an internal call to D02NNF. Check problem specification and all
parameters and array dimensions. Setting ITRACE = 1 may provide more information. If the
problem persists, contact NAG.

IFAIL = 10

The required task has been completed, but it is estimated that a small change in ATOL and RTOL
is unlikely to produce any change in the computed solution. (Only applies when the user is not
operating in one step mode, that is when ITASK �= 2 or 5.)

IFAIL = 11

An error occurred during Jacobian formulation of the ODE system (a more detailed error
description may be directed to the current advisory message unit). If using the sparse matrix
algebra option, the values of ALGOPT(29) and ALGOPT(30) may be inappropriate.

IFAIL = 12

In solving the ODE system, the maximum number of steps specified in ALGOPT(15) has been
taken.

IFAIL = 13

Some error weights wi became zero during the time integration (see description of ITOL). Pure
relative error control (ATOL(i) = 0.0) was requested on a variable (the ith) which has become
zero. The integration was succesful as far as t = TS.

IFAIL = 14

Not applicable.

IFAIL = 15

When using the sparse option, the value of NIW or NW was insufficient (more detailed information
may be directed to the current error message unit).

D03PKF.14 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PKF

7 Accuracy

The routine controls the accuracy of the integration in the time direction but not the accuracy of the
approximation in space. The spatial accuracy depends on both the number of mesh points and on their
distribution in space. In the time integration only the local error over a single step is controlled and so
the accuracy over a number of steps cannot be guaranteed. The user should therefore test the effect of
varying the accuracy parameters, ATOL and RTOL.

8 Further Comments

The Keller box scheme can be used to solve higher-order problems which have been reduced to first-order
by the introduction of new variables (see the example in Section 9 below). In general, a second-order
problem can be solved with slightly greater accuracy using the Keller box scheme instead of a finite-
difference scheme (D03PCF/D03PHF for example), but at the expense of increased CPU time due to the
larger number of function evaluations required.

It should be noted that the Keller box scheme, in common with other central-difference schemes, may
be unsuitable for some hyperbolic first-order problems such as the apparently simple linear advection
equation Ut + aUx = 0, where a is a constant, resulting in spurious oscillations due to the lack of
dissipation. This type of problem requires a discretisation scheme with upwind weighting (D03PLF for
example), or the addition of a second-order artificial dissipation term.

The time taken by the routine depends on the complexity of the system and on the accuracy requested.
For a given system and a fixed accuracy it is approximately proportional to NEQN.

9 Example

This problem provides a simple coupled system of two PDEs and one ODE.

(V1)
2 ∂U1

∂t
− xV1V̇1U2 −

∂U2

∂x
= 0,

U2 −
∂U1

∂x
= 0,

V̇1 − V1U1 − U2 − 1− t = 0,

for t ∈ [10−4, 0.1× 2i], for i = 1, 2, . . . , 5, x ∈ [0, 1]. The left boundary condition at x = 0 is

U2 = −V1 exp t,

and the right boundary condition at x = 1 is

U2 = −V1V̇1.

The initial conditions at t = 10−4 are defined by the exact solution:

V1 = t, U1(x, t) = exp {t(1− x)} − 1.0 and U2(x, t) = −t exp {t(1− x)} , x ∈ [0, 1],

and the coupling point is at ξ1 = 1.0.

This problem is exactly the same as the D03PHF example problem, but reduced to first-order by the
introduction of a second PDE variable (as mentioned in Section 8).

[NP3390/19/pdf] D03PKF.15

D03PKF D03 – Partial Differential Equations

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* D03PKF Example Program Text
* Mark 16 Release. NAG Copyright 1993.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER NPDE, NPTS, NCODE, NXI, NLEFT, NEQN, NIW, NWKRES,

+ LENODE, NW
PARAMETER (NPDE=2,NPTS=21,NCODE=1,NXI=1,NLEFT=1,

+ NEQN=NPDE*NPTS+NCODE,NIW=24,
+ NWKRES=NPDE*(NPTS+6*NXI+3*NPDE+15)
+ +NCODE+NXI+7*NPTS+2,LENODE=11*NEQN+50,
+ NW=NEQN*NEQN+NEQN+NWKRES+LENODE)

* .. Scalars in Common ..
real TS

* .. Local Scalars ..
real TOUT
INTEGER I, IFAIL, IND, IT, ITASK, ITOL, ITRACE
LOGICAL THETA
CHARACTER LAOPT, NORM

* .. Local Arrays ..
real ALGOPT(30), ATOL(1), EXY(NEQN), RTOL(1), U(NEQN),

+ W(NW), X(NPTS), XI(1)
INTEGER IW(NIW)

* .. External Subroutines ..
EXTERNAL BNDARY, D03PKF, EXACT, ODEDEF, PDEDEF, UVINIT

* .. Common blocks ..
COMMON /TAXIS/TS

* .. Executable Statements ..
WRITE (NOUT,*) ’D03PKF Example Program Results’
ITRACE = 0
ITOL = 1
ATOL(1) = 0.1e-3
RTOL(1) = ATOL(1)
WRITE (NOUT,99997) ATOL, NPTS

*
* Set spatial-mesh points
*

DO 20 I = 1, NPTS
X(I) = (I-1.0e0)/(NPTS-1.0e0)

20 CONTINUE
*

XI(1) = 1.0e0
NORM = ’A’
LAOPT = ’F’
IND = 0
ITASK = 1

*
* Set THETA to .TRUE. if the Theta integrator is required
*

THETA = .FALSE.
DO 40 I = 1, 30

ALGOPT(I) = 0.0e0
40 CONTINUE

IF (THETA) THEN

D03PKF.16 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PKF

ALGOPT(1) = 2.0e0
ELSE

ALGOPT(1) = 0.0e0
END IF
ALGOPT(1) = 1.0e0
ALGOPT(13) = 0.5e-2

*
* Loop over output value of t
*

TS = 1.0e-4
TOUT = 0.0e0
WRITE (NOUT,99999) X(1), X(5), X(9), X(13), X(21)

*
CALL UVINIT(NPDE,NPTS,X,U,NCODE,NEQN)

*
DO 60 IT = 1, 5

TOUT = 0.1e0*(2**IT)
IFAIL = -1

*
CALL D03PKF(NPDE,TS,TOUT,PDEDEF,BNDARY,U,NPTS,X,NLEFT,NCODE,

+ ODEDEF,NXI,XI,NEQN,RTOL,ATOL,ITOL,NORM,LAOPT,
+ ALGOPT,W,NW,IW,NIW,ITASK,ITRACE,IND,IFAIL)

*
* Check against the exact solution
*

CALL EXACT(TOUT,NEQN,NPTS,X,EXY)
*

WRITE (NOUT,99998) TS
WRITE (NOUT,99995) U(1), U(9), U(17), U(25), U(41), U(43)
WRITE (NOUT,99994) EXY(1), EXY(9), EXY(17), EXY(25), EXY(41),

+ TS
60 CONTINUE

WRITE (NOUT,99996) IW(1), IW(2), IW(3), IW(5)
STOP

*
99999 FORMAT (’ X ’,5F9.3,/)
99998 FORMAT (’ T = ’,F6.3)
99997 FORMAT (//’ Accuracy requirement =’,e10.3,’ Number of points = ’,

+ I3,/)
99996 FORMAT (’ Number of integration steps in time = ’,I6,/’ Number o’,

+ ’f function evaluations = ’,I6,/’ Number of Jacobian eval’,
+ ’uations =’,I6,/’ Number of iterations = ’,I6,/)

99995 FORMAT (1X,’App. sol. ’,F7.3,4F9.3,’ ODE sol. =’,F8.3)
99994 FORMAT (1X,’Exact sol. ’,F7.3,4F9.3,’ ODE sol. =’,F8.3,/)

END
*

SUBROUTINE UVINIT(NPDE,NPTS,X,U,NCODE,NEQN)
* Routine for PDE initial values
* .. Scalar Arguments ..

INTEGER NCODE, NEQN, NPDE, NPTS
* .. Array Arguments ..

real U(NEQN), X(NPTS)
* .. Scalars in Common ..

real TS
* .. Local Scalars ..

INTEGER I, K
* .. Intrinsic Functions ..

INTRINSIC EXP

[NP3390/19/pdf] D03PKF.17

D03PKF D03 – Partial Differential Equations

* .. Common blocks ..
COMMON /TAXIS/TS

* .. Executable Statements ..
K = 1
DO 20 I = 1, NPTS

U(K) = EXP(TS*(1.0e0-X(I))) - 1.0e0
U(K+1) = -TS*EXP(TS*(1.0e0-X(I)))
K = K + 2

20 CONTINUE
U(NEQN) = TS
RETURN
END

*
SUBROUTINE ODEDEF(NPDE,T,NCODE,V,VDOT,NXI,XI,UCP,UCPX,UCPT,F,IRES)

* .. Scalar Arguments ..
real T
INTEGER IRES, NCODE, NPDE, NXI

* .. Array Arguments ..
real F(*), UCP(NPDE,*), UCPT(NPDE,*), UCPX(NPDE,*),

+ V(*), VDOT(*), XI(*)
* .. Executable Statements ..

IF (IRES.EQ.-1) THEN
F(1) = VDOT(1)

ELSE
F(1) = VDOT(1) - V(1)*UCP(1,1) - UCP(2,1) - 1.0e0 - T

END IF
RETURN
END

*
SUBROUTINE PDEDEF(NPDE,T,X,U,UDOT,UX,NCODE,V,VDOT,RES,IRES)

* .. Scalar Arguments ..
real T, X
INTEGER IRES, NCODE, NPDE

* .. Array Arguments ..
real RES(NPDE), U(NPDE), UDOT(NPDE), UX(NPDE), V(*),

+ VDOT(*)
* .. Executable Statements ..

IF (IRES.EQ.-1) THEN
RES(1) = V(1)*V(1)*UDOT(1) - X*U(2)*V(1)*VDOT(1)
RES(2) = 0.0e0

ELSE
RES(1) = V(1)*V(1)*UDOT(1) - X*U(2)*V(1)*VDOT(1) - UX(2)
RES(2) = U(2) - UX(1)

END IF
RETURN
END

*
SUBROUTINE BNDARY(NPDE,T,IBND,NOBC,U,UDOT,NCODE,V,VDOT,RES,IRES)

* .. Scalar Arguments ..
real T
INTEGER IBND, IRES, NCODE, NOBC, NPDE

* .. Array Arguments ..
real RES(NOBC), U(NPDE), UDOT(NPDE), V(*), VDOT(*)

* .. Intrinsic Functions ..
INTRINSIC EXP

* .. Executable Statements ..
IF (IBND.EQ.0) THEN

IF (IRES.EQ.-1) THEN

D03PKF.18 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PKF

RES(1) = 0.0e0
ELSE

RES(1) = U(2) + V(1)*EXP(T)
END IF

ELSE
IF (IRES.EQ.-1) THEN

RES(1) = V(1)*VDOT(1)
ELSE

RES(1) = U(2) + V(1)*VDOT(1)
END IF

END IF
RETURN
END

*
SUBROUTINE EXACT(TIME,NEQN,NPTS,X,U)

* Exact solution (for comparison purposes)
* .. Scalar Arguments ..

real TIME
INTEGER NEQN, NPTS

* .. Array Arguments ..
real U(NEQN), X(NPTS)

* .. Local Scalars ..
INTEGER I, K

* .. Intrinsic Functions ..
INTRINSIC EXP

* .. Executable Statements ..
K = 1
DO 20 I = 1, NPTS

U(K) = EXP(TIME*(1.0e0-X(I))) - 1.0e0
K = K + 2

20 CONTINUE
RETURN
END

9.2 Program Data

None.

9.3 Program Results

D03PKF Example Program Results

Accuracy requirement = 0.100E-03 Number of points = 21

X 0.000 0.200 0.400 0.600 1.000

T = 0.200
App. sol. 0.222 0.174 0.128 0.084 0.000 ODE sol. = 0.200
Exact sol. 0.221 0.174 0.127 0.083 0.000 ODE sol. = 0.200

T = 0.400
App. sol. 0.492 0.377 0.271 0.174 0.000 ODE sol. = 0.400
Exact sol. 0.492 0.377 0.271 0.174 0.000 ODE sol. = 0.400

T = 0.800
App. sol. 1.226 0.896 0.616 0.377 0.000 ODE sol. = 0.800
Exact sol. 1.226 0.896 0.616 0.377 0.000 ODE sol. = 0.800

[NP3390/19/pdf] D03PKF.19

D03PKF D03 – Partial Differential Equations

T = 1.600
App. sol. 3.952 2.595 1.610 0.895 -0.001 ODE sol. = 1.600
Exact sol. 3.953 2.597 1.612 0.896 0.000 ODE sol. = 1.600

T = 3.200
App. sol. 23.522 11.918 5.807 2.588 -0.004 ODE sol. = 3.197
Exact sol. 23.533 11.936 5.821 2.597 0.000 ODE sol. = 3.200

Number of integration steps in time = 642
Number of function evaluations = 3022
Number of Jacobian evaluations = 39
Number of iterations = 1328

D03PKF.20 (last) [NP3390/19/pdf]

