
D03 – Partial Differential Equations

D03PXF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

D03PXF calculates a numerical flux function using an Exact Riemann Solver for the Euler equations
in conservative form. The routine is designed primarily for use with the upwind discretisation routines
D03PFF, D03PLF or D03PSF, but may also be applicable to other conservative upwind schemes requiring
numerical flux functions.

2 Specification

SUBROUTINE D03PXF(ULEFT, URIGHT, GAMMA, TOL, NITER, FLUX, IFAIL)
INTEGER NITER, IFAIL
real ULEFT(3), URIGHT(3), GAMMA, TOL, FLUX(3)

3 Description

D03PXF calculates a numerical flux function at a single spatial point using an Exact Riemann Solver
(see [1] and [2]) for the Euler equations (for a perfect gas) in conservative form. The user must supply
the left and right solution values at the point where the numerical flux is required, i.e., the initial left
and right states of the Riemann problem defined below. In the routines D03PFF, D03PLF and D03PSF,
the left and right solution values are derived automatically from the solution values at adjacent spatial
points and supplied to the subroutine argument NUMFLX from which the user may call D03PXF. The
Euler equations for a perfect gas in conservative form are:

∂U

∂t
+

∂F

∂x
= 0, (1)

with

U =




ρ

m

e


 and F =




m

m2

ρ
+ (γ − 1)

(
e − m2

2ρ

)

me

ρ
+

m

ρ
(γ − 1)

(
e − m2

2ρ

)


 , (2)

where ρ is the density, m is the momentum, e is the specific total energy and γ is the (constant) ratio of
specific heats. The pressure p is given by

p = (γ − 1)
(

e − ρu2

2

)
, (3)

where u = m/ρ is the velocity.

The routine calculates the numerical flux function F (UL, UR) = F (U∗(UL, UR)), where U = UL and
U = UR are the left and right solution values, and U∗(UL, UR) is the intermediate state ω(0) arising from
the similarity solution U(y, t) = ω(y/t) of the Riemann problem defined by

∂U

∂t
+

∂F

∂y
= 0, (4)

with U and F as in (2), and initial piecewise constant values U = UL for y < 0 and U = UR for y > 0.
The spatial domain is −∞ < y < ∞, where y = 0 is the point at which the numerical flux is required.

The algorithm is termed an Exact Riemann Solver although it does in fact calculate an approximate
solution to a true Riemann problem, as opposed to an Approximate Riemann Solver which involves some
form of alternative modelling of the Riemann problem. The approximation part of the Exact Riemann
Solver is a Newton-Raphson iterative procedure to calculate the pressure, and the user must supply a

[NP3390/19/pdf] D03PXF.1

D03PXF D03 – Partial Differential Equations

tolerance TOL and a maximum number of iterations NITER. Default values for these parameters can be
chosen.

A solution can not be found by this routine if there is a vacuum state in the Riemann problem (loosely
characterised by zero density), or if such a state is generated by the interaction of two non-vacuum data
states. In this case a Riemann solver which can handle vacuum states has to be used (see [1]).

4 References

[1] Toro E F (1996) Riemann Solvers and Upwind Methods for Fluid Dynamics Springer-Verlag

[2] Toro E F (1989) A weighted average flux method for hyperbolic conservation laws Proc. Roy. Soc.
Lond. A423 401–418

5 Parameters

1: ULEFT(3) — real array Input

On entry: ULEFT(i) must contain the left value of the component Ui for i = 1,2,3. That is,
ULEFT(1) must contain the left value of ρ, ULEFT(2) must contain the left value of m and
ULEFT(3) must contain the left value of e.

2: URIGHT(3) — real array Input

On entry: URIGHT(i) must contain the right value of the component Ui for i = 1,2,3. That is,
URIGHT(1) must contain the right value of ρ, URIGHT(2) must contain the right value of m and
URIGHT(3) must contain the right value of e.

3: GAMMA — real Input

On entry: the ratio of specific heats γ.

Constraint: GAMMA > 0.0.

4: TOL — real Input

On entry: the tolerance to be used in the Newton-Raphson procedure to calculate the pressure. If
TOL is set to zero then the default value of 1.0× 10−6 is used.

Constraint: TOL ≥ 0.0.

5: NITER — INTEGER Input

On entry: the maximum number of Newton-Raphson iterations allowed. If NITER is set to zero
then the default value of 20 is used.

Constraint: NITER ≥ 0.

6: FLUX(3) — real array Output

On exit: FLUX(i) contains the numerical flux component F̂i for i = 1,2,3.

7: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

Note. If the left and/or right values of ρ or p (from (3)) are found to be negative, then the routine
will terminate with an error exit (IFAIL = 2). If the routine is being called from the user-supplied
subroutine NUMFLX in D03PFF etc., then a soft fail option (IFAIL = 1 or −1) is recommended so
that a recalculation of the current time step can be forced using the IRES parameter.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

D03PXF.2 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PXF

6 Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

On entry, GAMMA ≤ 0.0,

or TOL < 0.0,

or NITER < 0.

IFAIL = 2

On entry, the left and/or right density or derived pressure value is less than 0.0.

IFAIL = 3

A vacuum condition has been detected therefore a solution can not be found using this routine.
You are advised to check your problem formulation.

IFAIL = 4

The internal Newton-Raphson iterative procedure used to solve for the pressure has failed to
converge. The value of TOL or NITER may be too small, but if the problem persists try an
Approximate Riemann Solver (D03PUF, D03PVF or D03PWF).

7 Accuracy

The algorithm is exact apart from the calculation of the pressure which uses a Newton-Raphson iterative
procedure, the accuracy of which is controlled by the parameter TOL. In some cases the initial guess for
the Newton-Raphson procedure is exact and no further iterations are required.

8 Further Comments

The routine must only be used to calculate the numerical flux for the Euler equations in exactly the
form given by (2), with ULEFT(i) and URIGHT(i) containing the left and right values of ρ, m and e for
i = 1, 2, 3 respectively.

For some problems the routine may fail or be highly inefficient in comparison with an Approximate
Riemann Solver (e.g., D03PUF, D03PVF or D03PWF). Hence it is advisable to try more than one
Riemann solver and to compare the performance and the results.

The time taken by the routine is independent of all input parameters other than TOL.

9 Example

This example uses D03PLF and D03PXF to solve the Euler equations in the domain 0 ≤ x ≤ 1 for 0 <
t ≤ 0.035 with initial conditions for the primitive variables ρ(x, t), u(x, t) and p(x, t) given by

ρ(x, 0) = 5.99924, u(x, 0)= 19.5975, p(x, 0)=460.894, for x < 0.5,
ρ(x, 0) = 5.99242, u(x, 0)=−6.19633, p(x, 0)= 46.095, for x > 0.5.

This test problem is taken from [1] and its solution represents the collision of two strong shocks travelling
in opposite directions, consisting of a left facing shock (travelling slowly to the right), a right travelling
contact discontinuity and a right travelling shock wave. There is an exact solution to this problem (see
[1]) but the calculation is lengthy and has therefore been omitted.

[NP3390/19/pdf] D03PXF.3

D03PXF D03 – Partial Differential Equations

9.1 Program Text

* D03PXF Example Program Text
* Mark 18 Release. NAG Copyright 1997.
* .. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER NPDE, NPTS, NCODE, NXI, NEQN, NIW, NWKRES,

+ LENODE, MLU, NW
PARAMETER (NPDE=3,NPTS=141,NCODE=0,NXI=0,

+ NEQN=NPDE*NPTS+NCODE,NIW=NEQN+24,
+ NWKRES=NPDE*(2*NPTS+3*NPDE+32)+7*NPTS+4,
+ LENODE=9*NEQN+50,MLU=3*NPDE-1,NW=(3*MLU+1)
+ *NEQN+NWKRES+LENODE)

* .. Scalars in Common ..
real EL0, ER0, GAMMA, RL0, RR0, UL0, UR0

* .. Local Scalars ..
real D, P, TOUT, TS, V
INTEGER I, IFAIL, IND, ITASK, ITOL, ITRACE, K
CHARACTER LAOPT, NORM

* .. Local Arrays ..
real ALGOPT(30), ATOL(1), RTOL(1), U(NPDE,NPTS),

+ UE(3,9), W(NW), X(NPTS), XI(1)
INTEGER IW(NIW)

* .. External Subroutines ..
EXTERNAL BNDARY, D03PEK, D03PLF, D03PLP, NUMFLX

* .. Common blocks ..
COMMON /INIT/EL0, ER0, RL0, RR0, UL0, UR0
COMMON /PARAMS/GAMMA

* .. Executable Statements ..
WRITE (NOUT,*) ’D03PXF Example Program Results’

* Skip heading in data file
READ (NIN,*)

*
* Problem parameters
*

GAMMA = 1.4e0
RL0 = 5.99924e0
RR0 = 5.99242e0
UL0 = 5.99924e0*19.5975e0
UR0 = -5.99242e0*6.19633e0
EL0 = 460.894e0/(GAMMA-1.0e0) + 0.5e0*RL0*19.5975e0**2
ER0 = 46.095e0/(GAMMA-1.0e0) + 0.5e0*RR0*6.19633e0**2

*
* Initialise mesh
*

DO 20 I = 1, NPTS
X(I) = 1.0e0*(I-1.0e0)/(NPTS-1.0e0)

20 CONTINUE
*
* Initial values
*

DO 40 I = 1, NPTS
IF (X(I).LT.0.5e0) THEN

U(1,I) = RL0
U(2,I) = UL0
U(3,I) = EL0

ELSE IF (X(I).EQ.0.5e0) THEN

D03PXF.4 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PXF

U(1,I) = 0.5e0*(RL0+RR0)
U(2,I) = 0.5e0*(UL0+UR0)
U(3,I) = 0.5e0*(EL0+ER0)

ELSE
U(1,I) = RR0
U(2,I) = UR0
U(3,I) = ER0

END IF
40 CONTINUE

*
ITRACE = 0
ITOL = 1
NORM = ’2’
ATOL(1) = 0.5e-2
RTOL(1) = 0.5e-3
XI(1) = 0.0e0
LAOPT = ’B’
IND = 0
ITASK = 1
DO 60 I = 1, 30

ALGOPT(I) = 0.0e0
60 CONTINUE

*
* Theta integration
*

ALGOPT(1) = 2.0e0
ALGOPT(6) = 2.0e0
ALGOPT(7) = 2.0e0

*
* Max. time step
*

ALGOPT(13) = 0.5e-2
*

TS = 0.0e0
TOUT = 0.035e0
IFAIL = 0

*
CALL D03PLF(NPDE,TS,TOUT,D03PLP,NUMFLX,BNDARY,U,NPTS,X,NCODE,

+ D03PEK,NXI,XI,NEQN,RTOL,ATOL,ITOL,NORM,LAOPT,ALGOPT,W,
+ NW,IW,NIW,ITASK,ITRACE,IND,IFAIL)

*
WRITE (NOUT,99998) TS
WRITE (NOUT,99999)

*
* Read exact data at output points
*

DO 80 I = 1, 9
READ (NIN,*) UE(1,I), UE(2,I), UE(3,I)

80 CONTINUE
*
* Calculate density, velocity and pressure
*

K = 0
DO 100 I = 15, NPTS - 14, 14

D = U(1,I)
V = U(2,I)/D
P = D*(GAMMA-1.0e0)*(U(3,I)/D-0.5e0*V**2)
K = K + 1

[NP3390/19/pdf] D03PXF.5

D03PXF D03 – Partial Differential Equations

WRITE (NOUT,99996) X(I), D, UE(1,K), V, UE(2,K), P, UE(3,K)
100 CONTINUE

*
WRITE (NOUT,99997) IW(1), IW(2), IW(3), IW(5)
STOP

*
99999 FORMAT (4X,’X’,6X,’APPROX D’,3X,’EXACT D’,4X,’APPROX V’,3X,’EXAC’,

+ ’T V’,4X,’APPROX P’,3X,’EXACT P’)
99998 FORMAT (/’ T = ’,F6.3,/)
99997 FORMAT (/’ Number of integration steps in time = ’,I6,/’ Number ’,

+ ’of function evaluations = ’,I6,/’ Number of Jacobian ’,
+ ’evaluations =’,I6,/’ Number of iterations = ’,I6,/)

99996 FORMAT (1X,e8.2,6(1X,e10.4))
END

*
SUBROUTINE BNDARY(NPDE,NPTS,T,X,U,NCODE,V,VDOT,IBND,G,IRES)

* .. Scalar Arguments ..
real T
INTEGER IBND, IRES, NCODE, NPDE, NPTS

* .. Array Arguments ..
real G(NPDE), U(NPDE,NPTS), V(*), VDOT(*), X(NPTS)

* .. Scalars in Common ..
real EL0, ER0, RL0, RR0, UL0, UR0

* .. Common blocks ..
COMMON /INIT/EL0, ER0, RL0, RR0, UL0, UR0

* .. Executable Statements ..
IF (IBND.EQ.0) THEN

G(1) = U(1,1) - RL0
G(2) = U(2,1) - UL0
G(3) = U(3,1) - EL0

ELSE
G(1) = U(1,NPTS) - RR0
G(2) = U(2,NPTS) - UR0
G(3) = U(3,NPTS) - ER0

END IF
RETURN
END

*
SUBROUTINE NUMFLX(NPDE,T,X,NCODE,V,ULEFT,URIGHT,FLUX,IRES)

* .. Scalar Arguments ..
real T, X
INTEGER IRES, NCODE, NPDE

* .. Array Arguments ..
real FLUX(NPDE), ULEFT(NPDE), URIGHT(NPDE), V(*)

* .. Scalars in Common ..
real GAMMA

* .. Local Scalars ..
real TOL
INTEGER IFAIL, NITER

* .. External Subroutines ..
EXTERNAL D03PXF

* .. Common blocks ..
COMMON /PARAMS/GAMMA

* .. Save statement ..
SAVE /PARAMS/

* .. Executable Statements ..
*

IFAIL = 0

D03PXF.6 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PXF

TOL = 0.0e0
NITER = 0
CALL D03PXF(ULEFT,URIGHT,GAMMA,TOL,NITER,FLUX,IFAIL)
RETURN
END

9.2 Program Data

D03PXF Example Program Data
0.5999E+01 0.1960E+02 0.4609E+03
0.5999E+01 0.1960E+02 0.4609E+03
0.5999E+01 0.1960E+02 0.4609E+03
0.5999E+01 0.1960E+02 0.4609E+03
0.5999E+01 0.1960E+02 0.4609E+03
0.1428E+02 0.8690E+01 0.1692E+04
0.1428E+02 0.8690E+01 0.1692E+04
0.1428E+02 0.8690E+01 0.1692E+04
0.3104E+02 0.8690E+01 0.1692E+04

9.3 Program Results

D03PXF Example Program Results

T = 0.035

X APPROX D EXACT D APPROX V EXACT V APPROX P EXACT P
0.10E+00 0.5999E+01 0.5999E+01 0.1960E+02 0.1960E+02 0.4609E+03 0.4609E+03
0.20E+00 0.5999E+01 0.5999E+01 0.1960E+02 0.1960E+02 0.4609E+03 0.4609E+03
0.30E+00 0.5999E+01 0.5999E+01 0.1960E+02 0.1960E+02 0.4609E+03 0.4609E+03
0.40E+00 0.5999E+01 0.5999E+01 0.1960E+02 0.1960E+02 0.4609E+03 0.4609E+03
0.50E+00 0.5999E+01 0.5999E+01 0.1960E+02 0.1960E+02 0.4609E+03 0.4609E+03
0.60E+00 0.1423E+02 0.1428E+02 0.8660E+01 0.8690E+01 0.1688E+04 0.1692E+04
0.70E+00 0.1425E+02 0.1428E+02 0.8672E+01 0.8690E+01 0.1688E+04 0.1692E+04
0.80E+00 0.1921E+02 0.1428E+02 0.8674E+01 0.8690E+01 0.1689E+04 0.1692E+04
0.90E+00 0.3100E+02 0.3104E+02 0.8675E+01 0.8690E+01 0.1687E+04 0.1692E+04

Number of integration steps in time = 697
Number of function evaluations = 1708
Number of Jacobian evaluations = 1
Number of iterations = 2

[NP3390/19/pdf] D03PXF.7 (last)

