D03 — Partial Differential Equations

DO3RAF — NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

DO3RAF integrates a system of linear or nonlinear, time-dependent partial differential equations (PDEs)
in two space dimensions on a rectangular domain. The method of lines is employed to reduce the PDEs
to a system of ordinary differential equations (ODEs) which are solved using a backward differentiation
formula (BDF) method. The resulting system of nonlinear equations is solved using a modified Newton
method and a Bi-CGSTAB iterative linear solver with ILU preconditioning. Local uniform grid refinement
is used to improve the accuracy of the solution. DOSRAF originates from the VLUGR2 package [1] [2].

2 Specification

SUBROUTINE DO3RAF(NPDE, TS, TOUT, DT, XMIN, XMAX, YMIN, YMAX, NX,

1 NY, TOLS,TOLT, PDEDEF, BNDARY, PDEIV, MONITR,

2 OPTI,OPTR, RWK, LENRWK, IWK, LENIWK, LWK,LENLWK,
3 ITRACE, IND, IFAIL)

INTEGER NPDE, NX, NY, OPTI(4), LENRWK, IWK(LENIWK),

1 LENIWK, LENLWK, ITRACE, IND, IFAIL

real TS, TOUT, DT(3), XMIN, XMAX, YMIN, YMAX, TOLS,

1 TOLT, OPTR(3,NPDE), RWK(LENRWK)

LOGICAL LWK (LENLWK)

EXTERNAL PDEDEF, BNDARY, PDEIV, MONITR

3 Description
DO3RAF integrates the system of PDEs:

Fi(t, @, y, 1, Uy, Uy Uy Uy Uy ) = 0, j = 1,2,... . NPDE, (1)

for  and y in the rectangular domain z_;, <& < 2.5 Ymin <Y < Ymax, a00d time interval ¢, <t <t
where the vector u is the set of solution values

out’

u(x, Y, t) - [Ul(l‘, Y, t)v ] uNPDE(xa Y, t)]Ta
and u, denotes partial differentiation with respect to ¢, and similarly for u, etc.

The functions F; must be supplied by the user in a subroutine PDEDEF. Similarly the initial values of
the functions u(z,y,t) must be specified at ¢ = ¢, in a subroutine PDEIV.

Note that whilst complete generality is offered by the master equations (1), DO3RAF is not appropriate
for all PDEs. In particular, hyperbolic systems should not be solved using this routine. Also, at least
one component of u, must appear in the system of PDEs.

The boundary conditions must be supplied by the user in a subroutine BNDARY in the form

G;(t,z,y,u,up,u,,u,) =0 at z=x for j =1,2,...,NPDE. (2)

min’ Zmax7 Y = Ymins ymax’
The domain is covered by a uniform coarse base grid of size n, x n,, specified by the user, and nested
finer uniform subgrids are subsequently created in regions with high spatial activity. The refinement
is controlled using a space monitor which is computed from the current solution and a user-supplied
space tolerance TOLS. A number of optional parameters, e.g., the maximum number of grid levels at any
time, and some weighting factors, can be specified in the arrays OPTI and OPTR. Further details of the
refinement strategy can be found in Section 8.

The system of PDEs and the boundary conditions are discretised in space on each grid using a standard
second-order finite difference scheme (centred on the internal domain and one-sided at the boundaries),
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and the resulting system of ODEs is integrated in time using a second-order, two-step, implicit BDF
method with variable step size. The time integration is controlled using a time monitor computed at
each grid level from the current solution and a user-supplied time tolerance TOLT, and some further
optional user-specified weighting factors held in OPTR (see Section 8 for details). The time monitor is
used to compute a new step size, subject to restrictions on the size of the change between steps, and
(optional) user-specified maximum and minimum step sizes held in DT. The step size is adjusted so that
the remaining integration interval is an integer number times At. In this way a solution is obtained at
l= tout'

A modified Newton method is used to solve the nonlinear equations arising from the time integration.
The user may specify (in OPTI) the maximum number of Newton iterations to be attempted. A Jacobian
matrix is calculated at the beginning of each time step. If the Newton process diverges or the maximum
number of iterations is exceeded, a new Jacobian is calculated using the most recent iterates and the
Newton process is restarted. If convergence is not achieved after the (optional) user-specified maximum
number of new Jacobian evaluations, the time step is retried with At = At/4. The linear systems arising
from the Newton iteration are solved using a Bi-CGSTAB iterative method, in combination with ILU
preconditioning. The maximum number of iterations can be specified by the user in OPTI.

The solution at all grid levels is stored in the workspace arrays, along with other information needed for a
restart (i.e., a continuation call). It is not intended that the user extracts the solution from these arrays,
indeed the necessary information regarding these arrays is not included. The user-supplied monitor
routine MONITR should be used to obtain the solution at particular levels and times. MONITR is called
at the end of every time step, with the last step being identified via the input argument TLAST.

Within the user-specified subroutines PDEIV, PDEDEF, BNDARY and MONITR the data structure is
as follows. Each point on a particular grid is given an index (ranging from 1 to the total number of points
on the grid) and all coordinate or solution information is stored in arrays according to this index, e.g.,
X(7) and Y (i) contain the x- and y-coordinate of point 4, and U(7,j) contains the jth solution component
u; at point z.

Further details of the underlying algorithm can be found in Section 8 and in [1] [2] and the references
therein.

4 References

[1] Blom J G and Verwer J G (1993) VLUGR2: A vectorized local uniform grid refinement code for
PDEs in 2D Report NM-R9306 CWI, Amsterdam

[2] Blom J G, Trompert R A and Verwer J G (1996) Algorithm 758. VLUGR2: A vectorizable adaptive
grid solver for PDEs in 2D Trans. Math. Software 22 302-328

[3] Trompert R A and Verwer J G (1993) Analysis of the implicit Euler local uniform grid refinement
method SIAM J. Sci. Comput. 14 259-278

[4] Trompert R A (1993) Local uniform grid refinement and systems of coupled partial differential
equations Appl. Numer. Maths 12 331-355

[6] Adjerid S and Flaherty J E (1988) A local refinement finite element method for two dimensional
parabolic systems SIAM J. Sci. Statist. Comput. 9 792-811

[6] Brown P N, Hindmarsh A C and Petzold L R (1994) Using Krylov methods in the solution of large
scale differential-algebraic systems SIAM J. Sci. Statist. Comput. 15 14671488

5 Parameters

1: NPDE — INTEGER Input
On entry: the number of PDEs in the system.

Constraint: NPDE > 1.
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10:

TS — real Input/Output

On entry: the initial value of the independent variable ¢.
On exit: the value of ¢t which has been reached. Normally TS = TOUT.
Constraint: TS < TOUT.

TOUT — real Input

On entry: the final value of ¢ to which the integration is to be carried out.

DT(3) — real array Input/Output

On entry: the initial, minimum and maximum time step sizes respectively. DT(1) specifies the
initial time step size to be used on the first entry, i.e., when IND = 0. If DT(1) = 0.0 then the
default value DT(1) = 0.01 x (TOUT-TS) is used. On subsequent entries (IND = 1), the value of
DT(1) is not referenced.

DT(2) specifies the minimum time step size to be attempted by the integrator. If DT(2) = 0.0 the
default value DT(2) = 10.0 x machine precision is used.

DT(3) specifies the maximum time step size to be attempted by the integrator. If DT(3) = 0.0 the
default value DT(3) = TOUT — TS is used.

On exit: DT(1) contains the time step size for the next time step. DT(2) and DT(3) are unchanged
or set to their default values if zero on entry.

Constraints: if IND = 1 then DT(1) is unconstrained. Otherwise DT(1) > 0 and if DT(1) > 0.0
then it must satisfy the constraints:

10.0 x machine precision x max(|TS|,|/TOUT|) < DT(1) < TOUT — TS
DT(2) < DT(1) < DT(3)
where the values of DT(2) and DT(3) will have been reset to their default values if zero on entry.

DT(2) and DT(3) must satisfy DT (i) > 0, ¢ = 2,3 and DT(2) < DT(3) for IND = 0 and IND = 1.

XMIN — real Input
XMAX — real Input

On entry: the extents of the rectangular domain in the z-direction, i.e., the z-coordinates of the
left and right boundaries respectively.

Constraint: XMIN < XMAX and XMAX must be sufficiently distinguishable from XMIN for the

precision of the machine being used.

YMIN — real Input
YMAX — real Input

On entry: the extents of the rectangular domain in the y-direction, i.e., the y-coordinates of the
lower and upper boundaries respectively.

Constraint: YMIN < YMAX and YMAX must be sufficiently distinguishable from YMIN for the
precision of the machine being used.

NX — INTEGER Input
On entry: the number of grid points in the z-direction (including the boundary points).
Constraint: NX > 4.

NY — INTEGER Input
On entry: the number of grid points in the y-direction (including the boundary points).

Constraint: NY > 4.
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11:

12:

13:

TOLS — real Input

On entry: the space tolerance used in the grid refinement strategy (¢ in equation (4)). See Section
8.2.

Constraint: TOLS > 0.0.

TOLT — real Input
On entry: the time tolerance used to determine the time step size (7 in equation (7)). See Section
8.3.

Constraint: TOLT > 0.0.

PDEDEF — SUBROUTINE, supplied by the user. FExternal Procedure

PDEDEF must evaluate the functions F}, j = 1,2,.., NPDE, in equation (1) which define the system
of PDEs (i.e., the residuals of the resulting ODE system) at all interior points of the domain. Values
at points on the boundaries of the domain are ignored and will be overwritten by the subroutine
BNDARY. PDEDEF is called for each subgrid in turn.

Its specification is:

SUBROUTINE PDEDEF (NPTS, NPDE, T, X, Y, U, UT, UX, UY, UXX, UXY,

1 UYY, RES)

INTEGER NPTS, NPDE

real T, X(NPTS), Y(NPTS), U(NPTS,NPDE),

1 UT (NPTS,NPDE), UX(NPTS,NPDE), UY(NPTS,NPDE),
UXX (NPTS,NPDE), UXY(NPTS,NPDE), UYY(NPTS,NPDE),

3 RES (NPTS, NPDE)

1: NPTS — INTEGER Input
On entry: the number of grid points in the current grid.

2: NPDE — INTEGER Input
On entry: the number of PDEs in the system.

3: T —real Input
On entry: the current value of the independent variable ¢.

4: X(NPTS) — real array Input
On entry: X(i) contains the a-coordinate of the ith grid point, for i = 1,2,... ,NPTS.

5. Y(NPTS) — real array Input
On entry: Y (i) contains the y-coordinate of the ith grid point, for ¢ = 1,2,... NPTS.

6: U(NPTSNPDE) — real array Input
On entry: U(i,j) contains the value of the jth PDE component at the i¢th grid point, for
i=1,2,... NPTS, j =1,2,... NPDE.

7.  UT(NPTS,NPDE) — real array Input
On entry: UT(i,j) contains the value of du/dt for the jth PDE component at the ith grid
point, for ¢ =1,2,... NPTS, j=1,2,...,NPDE.

8: UX(NPTS,NPDE) — real array Input
On entry: UX(i,j) contains the value of du/dx for the jth PDE component at the ith grid
point, for ¢ =1,2,... NPTS, j=1,2,...,NPDE.

9: UY(NPTS,NPDE) — real array Input
On entry: UY(i,j) contains the value of du/9dy for the jth PDE component at the ith grid
point, for ¢ =1,2,... NPTS, j=1,2,...,NPDE.

10: UXX(NPTS,NPDE) — real array Input

On entry: UXX(i,j) contains the value of 9?u/dz? for the jth PDE component at the ith grid
point, for ¢ =1,2,... NPTS, j=1,2,...,NPDE.
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11: UXY(NPTS,NPDE) — real array Input
On entry: UXY(i,j) contains the value of 9*u/dxzdy for the jth PDE component at the ith
grid point, for i =1,2,... ,NPTS, j =1,2,... NPDE.

12: UYY(NPTS,NPDE) — real array Input
On entry: UYY(i,j) contains the value of 9?u/dy? for the jth PDE component at the ith grid
point, for : =1,2,... NPTS, j=1,2,...,NPDE.

13: RES(NPTS,NPDE) — real array Output

On ezit: RES(i,j) must contain the value of F; for j = 1,2,... ,NPDE, at the ith grid point for
i=1,2,... NPTS, although the residuals at boundary points will be ignored (and overwritten
later on) and so they need not be specified here.

PDEDEF must be declared as EXTERNAL in the (sub)program from which DO3RAF is called.
Parameters denoted as Input must not be changed by this procedure.
14: BNDARY — SUBROUTINE;, supplied by the user. FExternal Procedure

BNDARY must evaluate the functions G;, j = 1,2,.., NPDE, in equation (2) which define the
boundary conditions at all boundary points of the domain. Residuals at interior points must not be
altered by this subroutine.

Its specification is:

SUBROUTINE BNDARY(NPTS, NPDE, T, X, Y, U, UT, UX, UY, NBPTS, LBND,

1 RES)
INTEGER NPTS, NPDE, NBPTS, LBND(NBPTS)
real T, X(NPTS), Y(NPTS), U(NPTS,NPDE),
1 UT (NPTS,NPDE), UX(NPTS,NPDE), UY(NPTS,NPDE),
2 RES (NPTS,NPDE)
1: NPTS — INTEGER Input
On entry: the number of grid points in the current grid.
2: NPDE — INTEGER Input

On entry: the number of PDEs in the system.

3: T —real Input
On entry: the current value of the independent variable ¢.

4: X(NPTS) — real array Input
On entry: X(i) contains the a-coordinate of the ith grid point, for i = 1,2,... ,NPTS.

5. Y(NPTS) — real array Input
On entry: Y (i) contains the y-coordinate of the ith grid point, for i = 1,2,... NPTS.

6: U(NPTSNPDE) — real array Input
On entry: U(i,j) contains the value of the jth PDE component at the i¢th grid point, for
i=1,2,...NPTS, j = 1,2,... NPDE.

7:  UT(NPTS,NPDE) — real array Input
On entry: UT(i,j) contains the value of Ou/dt for the jth PDE component at the ith grid
point, for ¢t =1,2,... NPTS, 5 =1,2,...,NPDE.

8: UX(NPTS,NPDE) — real array Input

On entry: UX(i,j) contains the value of du/0x for the jth PDE component at the ith grid
point, for ¢ =1,2,... NPTS, j=1,2,...,NPDE.
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9: UY(NPTS,NPDE) — real array Input
On entry: UY(i,j) contains the value of 9u/9dy for the jth PDE component at the ith grid
point, for ¢ =1,2,... NPTS, j=1,2,...,NPDE.

10: NBPTS — INTEGER Input
On entry: the number of boundary points in the grid.

11: LBND(NBPTS) — INTEGER array Input

On entry: LBND(i) contains the grid index for the ith boundary point for ¢ = 1,2,... ,NBPTS.
Hence the ith boundary point has coordinates X(LBND(¢)) and Y(LBND(i)), and the
corresponding solution values are U(LBND(i),NPDE), etc.

12: RES(NPTS,NPDE) — real array Output

On ezit: RES(LBND(7),j) must contain the value of G, for j = 1,2,...,NPDE, at the ith
boundary point for ¢« = 1,2,... ,NBPTS.

Note. Elements of RES corresponding to interior points must not be altered.

BNDARY must be declared as EXTERNAL in the (sub)program from which DO3RAF is called.
Parameters denoted as Input must not be changed by this procedure.
15: PDEIV — SUBROUTINE;, supplied by the user. FEzxternal Procedure

PDEIV must specify the initial values of the PDE components u at all points in the grid. PDEIV
is not referenced if, on entry, IND = 1.

Its specification is:

SUBROUTINE PDEIV(NPTS, NPDE, T, X, Y, U)

INTEGER NPTS, NPDE
real T, X(NPTS), Y(NPTS), U(NPTS,NPDE)

1: NPTS — INTEGER Input
On entry: the number of grid points in the grid.

2: NPDE — INTEGER Input
On entry: the number of PDEs in the system.

3: T —real Input
On entry: the (initial) value of the independent variable t.

4: X(NPTS) — real array Input
On entry: X(i) contains the a-coordinate of the ith grid point, for i = 1,2,... ,NPTS.

5. Y(NPTS) — real array Input
On entry: Y (i) contains the y-coordinate of the ith grid point, for ¢ = 1,2,... NPTS.

6: U(NPTS,NPDE) — real array Output

On exit: U(i,j) must contain the value of the jth PDE component at the ith grid point, for
1=1,2,... NPTS, 5 =1,2,... NPDE.

PDEIV must be declared as EXTERNAL in the (sub)program from which DO3RAF is called.
Parameters denoted as Input must not be changed by this procedure.

16: MONITR — SUBROUTINE, supplied by the user. FExternal Procedure

MONITR is called by DO3RAF at the end of every successful time step, and may be used to examine
or print the solution or perform other tasks such as error calculations, particularly at the final time
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step,

indicated by the parameter TLAST. The input arguments contain information about the grid

and solution at all grid levels used.

MONITR can also be used to force an immediate tidy termination of the solution process and return
to the calling program.

Its specification is:

1

10:

11:

SUBROUTINE MONITR(NPDE, T, DT, DTNEW, TLAST, NLEV, NGPTS, XPTS,

YPTS, LSOL, SOL, IERR)
INTEGER NPDE, NLEV, NGPTS(NLEV), LSOL(NLEV), IERR
real T, DT, DTNEW, XPTS(*), YPTS(*), SOL(*)
LOGICAL TLAST
NPDE — INTEGER Input

On entry: the number of PDEs in the system.

T — real Input
On entry: the current value of the independent variable t, i.e., the time at the end of the
integration step just completed.

DT — real Input
On entry: the current time step size DT, i.e., the time step size used for the integration step
just completed.

DTNEW — real Input
On entry: the step size that will be used for the next time step.
TLAST — LOGICAL Input

On entry: indicates if intermediate or final time step. TLAST = .FALSE. for an intermediate
step, TLAST = .TRUE. for the last call to MONITR before returning to the user’s program.

NLEV — INTEGER Input
On entry: the number of grid levels used at time T.

NGPTS(NLEV) — INTEGER array Input
On entry: NGPTS(l) contains the number of grid points at level [, for I = 1,2,... ,NLEV.
XPTS(*) — real array Input

On entry: contains the z-coordinates of the grid points in each level in turn, i.e., X(3), for
i=1,2,...NGPTS(l),l=1,2,... NLEV.

So for level I, X(i) = XPTS(k + i), where k = NGPTS(1) + NGPTS(2) + - - - + NGPTS(I—1),
for i =1,2,... NGPTS(l), I =1,2,... NLEV.

YPTS(*) — real array Input
On entry: contains the y-coordinates of the grid points in each level in turn, i.e., Y(3), for
i=1,2,...NGPTS(l), I =1,2,... NLEV.

So for level I, Y(i) = YPTS(k + i), where k = NGPTS(1) + NGPTS(2) + - -+ NGPTS(I-1),
fori=1,2,... NGPTS(I), ! =1,2,... NLEV.

LSOL(NLEV) — INTEGER array Input
On entry: LSOL(I) contains the pointer to the solution in SOL at grid level [ and time T.
(LSOL(!) actually contains the array index immediately preceding the start of the solution in
SOL. See below.)

SOL(*) — real array Input

On entry: SOL contains the solution U(NGPTS(!),NPDE) at time T for each grid level [ in
turn, positioned according to LSOL i.e., for level [,

U(i,j) = SOL(LSOL(!) 4 (j — 1) x NGPTS(l) + i),
fori =1,... NGPTS(l), j=1,... NPDE, [ =1,... NLEV.
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12: IERR — INTEGER Output

On exit: IERR should be set to 1 to force a tidy termination and an immediate return to the
calling program with IFAIL set to 4. IERR should remain unchanged otherwise.

17:

18:

MONITR must be declared as EXTERNAL in the (sub)program from which DO3RAF is called.
Parameters denoted as Input must not be changed by this procedure.

OPTI(4) — INTEGER array Input

On entry: OPTI may be set to control various options available in the integrator. If OPTI(1) = 0
then all the default options are employed.

If OPTI(1) > 0 then the default value of OPTI(4) for ¢ = 2,3,4, can be obtained by setting OPTI(7)
=0.

OPTI(1) specifies the maximum number of grid levels allowed (including the base grid). OPTI(1)
> 0. The default value is OPTI(1) = 3.

OPTI(2) specifies the maximum number of Jacobian evaluations allowed during each nonlinear
equations solution. OPTI(2) > 0. The default value is OPTI(2) = 2.

OPTI(3) specifies the maximum number of Newton iterations in each nonlinear equations solution.
OPTI(3) > 0. The default value is OPTI(3) = 10.

OPTI(4) specifies the maximum number of iterations in each linear equations solution. OPTI(4) >
0. The default value is OPTI(4) = 100.

Constraints: if OPTI(1) > 0 and OPTI(1) > 0 then OPTI(i) > 0, ¢ = 2, 3, 4.

OPTR(3,NPDE) — real array Input

max

On entry: OPTR may be used to specify the optional vectors u*, w® and w' in the space and

time monitors (see Section 8).
If an optional vector is not required then all its components should be set to 1.0.

OPTR(1,j), for j = 1,2,... NPDE, specifies u}”‘”, the approximate maximum absolute value of the
jth component of u, as used in (4) and (7). OPTR(1,j) > 0.0 for j =1,2,... NPDE.

OPTR(2,j), for j = 1,2, ... NPDE, specifies w;f, the weighting factors used in the space monitor (see
(4)) to indicate the relative importance of the jth component of u on the space monitor. OPTR(2,5)
> 0.0 for j = 1,2,...,NPDE.

OPTR(3,j), for j =1,2,... NPDE, specifies w§, the weighting factors used in the time monitor (see
(6)) to indicate the relative importance of the jth component of v on the time monitor. OPTR(3,j)
> 0.0 for j = 1,2,...,NPDE.

Constraints:

OPTR(1,j) > 0.0 for j =1,2,... NPDE and
OPTR(4,7) > 0.0 for i = 2,3 and j = 1,2,...,NPDE.
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19:
20:

21:

22:

RWK(LENRWK) — real array Workspace
LENRWK — INTEGER Input

On entry: the dimension of the array RWK as declared in the (sub)program from which DO3RAF
is called.

The required value of LENRWK can not be determined exactly in advance, but a suggested value is
LENRWK = MAXPTS x NPDE x (5xI+18xNPDE+9) + 2 x MAXPTS,

where [ = OPTI(1) if OPTI(1) # 0 and I = 3 otherwise, and MAXPTS is the expected maximum
number of grid points at any one level. If during the execution the supplied value is found to be
too small then the routine returns with IFAIL = 3 and an estimated required size is printed on the
current error message unit (see X04AAF).

Constraint: LENRWK > NX x NY x NPDE x (14+18xNPDE) + 2 x NX x NY (the required
size for the initial grid).

IWK(LENIWK) — INTEGER array Output

On entry: if IND = 0, IWK need not be set. Otherwise IWK must remain unchanged from a
previous call to DO3RAF.

On exit: the following components of the array IWK concern the efficiency of the integration.

IWK(1) contains the number of steps taken in time.
IWK(2) contains the number of rejected time steps.

IWK(2+1) contains the total number of residual evaluations performed (i.e., the number of
times PDEDEF was called) at grid level ;

IWK(24+m+I) contains the total number of Jacobian evaluations performed at grid level [;
IWK(242xm+I) contains the total number of Newton iterations performed at grid level [;
IWK(24+3xm~+1) contains the total number of linear solver iterations performed at grid level
l;

IWK(24+4xm+I) contains the maximum number of Newton iterations performed at any one
time step at grid level [;

IWK(2+5xm+1) contains the maximum number of linear solver iterations performed at any
one time step at grid level [;

for i =1,2,...,nl, where nl is the number of levels used and m = OPTI(1) if OPTI(1) > 0 and m
= 3 otherwise.

Note. The total and maximum numbers are cumulative over all calls to DO3RAF. If the specified
maximum number of Newton or linear solver iterations is exceeded at any stage, then the maximums
above are set to the specified maximum plus one.

LENIWK — INTEGER Input

On entry: the dimension of the array IWK as declared in the (sub)program from which DO3RAF is
called.

The required value of LENIWK can not be determined exactly in advance, but a suggested value
is LENIWK = MAXPTS x (144+45xm) + 7 x m + 2, where MAXPTS is the expected maximum
number of grid points at any one level and m = OPTI(1) if OPTI(1) > 0 and m = 3 otherwise. If
during the execution the supplied value is found to be too small then the routine returns with IFAIL
= 3 and an estimated required size is printed on the current error message unit (see X04AAF).

Constraint: LENIWK > 19 x NX x NY + 9 (the required size for the initial grid).
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23:
24:

25:

26:

27:

6

LWK(LENLWK) — LOGICAL array Workspace
LENLWK — INTEGER Input

On entry: the dimension of the array LWK as declared in the (sub)program from which DO3RAF
is called.

The required value of LENLWK can not be determined exactly in advanced, but a suggested value
is LENLWK = MAXPTS + 1, where MAXPTS is the expected maximum number of grid points at
any one level. If during the execution the supplied value is found to be too small then the routine

returns with IFAIL = 3 and an estimated required size is printed on the current error message unit
(see X04AAF).

Constraint: LENLWK > NX x NY + 1 (the required size for the initial grid).

ITRACE — INTEGER Input

On entry: the level of trace information required from DOSRAF. ITRACE may take the value —1,
0,1,2,or 3. f ITRACE < —1, then —1 is assumed and similarly if ITRACE > 3, then 3 is assumed.
If ITRACE = —1, no output is generated. If ITRACE = 0, only warning messages are printed, and
if ITRACE > 0, then output from the underlying solver is printed on the current advisory message
unit (see X04ABF). This output contains details of the time integration, the nonlinear iteration and
the linear solver. The advisory messages are given in greater detail as ITRACE increases. Setting
ITRACE = 1 allows the user to monitor the progress of the integration without possibly excessive
information.

IND — INTEGER Input/Output
On entry: IND must be set to 0 or 1.
IND =0
starts the integration in time.
IND =1

continues the integration after an earlier exit from the routine. In this case, only the following
parameters may be reset between calls to DO3RAF: TOUT, DT(2), DT(3), TOLS, TOLT,
OPTI, OPTR, ITRACE and IFAIL.

Constraint: 0 < IND < 1.
On exit: IND = 1.
IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings

Errors detected by the routine:

IFAIL=1

On entry, NPDE < 1,
or TOUT < TS,
or TOUT is too close to TS,
or IND =0 and DT(1) < 0.0,
or DT(i) < 0.0 for i =2 or 3
or DT(2) > DT(3),
or IND = 0.0 and 0.0 < DT(1) < 10 x machine precision x max(|TS|,/TOUT|),
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or IND = 0.0 and DT(1) > TOUT — TS,

or IND = 0.0 and DT(1) < DT(2) or DT(1) > DT(3),
or XMIN > XMAX,

or XMAX too close to XMIN,

or YMIN > YMAX,

or YMAX too close to YMIN,

or NX or NY < 4,

or TOLS or TOLT < 0.0,

or OPTI(1) < 0,

or OPTI(1) > 0 and OPTI(j) < 0 for j = 2, 3 or 4,
or OPTR(1,j) < 0.0 for some j =1,2,... NPDE,

or OPTR(2,j) < 0.0 for some j =1,2,... NPDE,

or OPTR(3,j) < 0.0 for some j =1,2,... NPDE,

or LENRWK, LENIWK or LENLWK too small for initial grid level,
or IND #0orl,

or IND =1 on initial entry to DO3RAF,

IFAIL = 2

The time step size to be attempted is less than the specified minimum size. This may occur
following time step failures and subsequent step size reductions caused by one or more of the
following:

the requested accuracy could not be achieved, i.e., TOLT is too small,

the maximum number of linear solver iterations, Newton iterations or Jacobian evaluations
is too small,

ILU decomposition of the Jacobian matrix could not be performed, possibly due to singularity
of the Jacobian.

Setting ITRACE to a higher value may provide further information.

In the latter two cases the user is advised to check their problem formulation in PDEDEF and/or
BNDARY, and the initial values in PDEIV if appropriate.

IFAIL =3

One or more of the workspace arrays is too small for the required number of grid points. An
estimate of the required sizes for the current stage is output, but more space may be required at
a later stage.

IFAIL =4

IERR was set to 1 in the user-supplied subroutine MONITR, forcing control to be passed back to
calling program. Integration was successful as far as T = TS.

IFAIL =5

The integration has been completed but the maximum number of levels specified in OPTI(1) was
insufficient at one or more time steps, meaning that the requested space accuracy could not be
achieved. To avoid this warning either increase the value of OPTI(1) or decrease the value of
TOLS.

7 Accuracy

There are three sources of error in the algorithm: space and time discretisation, and interpolation
(linear) between grid levels. The space and time discretisation errors are controlled separately using
the parameters TOLS and TOLT described in the following section, and the user should test the effects
of varying these parameters. Interpolation errors are generally implicitly controlled by the refinement
criterion since in areas where interpolation errors are potentially large, the space monitor will also be
large. It can be shown that the global spatial accuracy is comparable to that which would be obtained
on a uniform grid of the finest grid size. A full error analysis can be found in [3].
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8 Further Comments
8.1 Algorithm Outline

The local uniform grid refinement method is summarised as follows

(1) Initialise the course base grid, an initial solution and an initial time step,
(2) Solve the system of PDEs on the current grid with the current time step,
(3) If the required accuracy in space and the maximum number of grid levels have not yet been reached:

a) Determine new finer grid at forward time level,

b) Get solution values at previous time level(s) on new grid,

¢) Interpolate internal boundary values from old grid at forward time,
d) Get initial values for the Newton process at forward time,

(e) Goto 2,

(4) Update the coarser grid solution using the finer grid values,
5) Estimate error in time integration. If time error is acceptable advance time level,
(6) Determine new step size then goto 2 with coarse base as current grid.

(
(
(

8.2 Refinement Strategy

For each grid point ¢ a space monitor y; is determined by

2 2

B B
s — 2— . . . 2— - . :
15 —j:{{lggDE{’vj(l Datmsu(@i, ;1) [+ Dy ayguj(%ywt) D} (3)

where Az and Ay are the grid widths in the x and y directions; and z,, y, are the  and y co-ordinates
at grid point ¢. The parameter v, is obtained from

Y= v ) (4)

where ¢ is the user-supplied space tolerance; w‘; is a weighting factor for the relative importance of the

jth PDE component on the space monitor; and u’*** is the approximate maximum absolute value of

j
the jth component. A value for o must be supplied by the user. Values for w; and u}*** must also be

supplied but may be set to the value 1.0 if little information about the solution is known.

A new level of refinement is created if
max{p;} > 0.9 or 1.0, (5)
K3

depending on the grid level at the previous step in order to avoid fluctuations in the number of grid levels
between time steps. If (5) is satisfied then all grid points for which p; > 0.25 are flagged and surrounding
cells are quartered in size.

No derefinement takes place as such, since at each time step the solution on the base grid is computed
first and new finer grids are then created based on the new solution. Hence derefinement occurs implicitly.
See Section 8.1.

8.3 Time Integration

The time integration is controlled using a time monitor calculated at each level I up to the maximum
level used, given by

1 NPDE NGPTS(l) At
[y = N Z w; Z (a_ut(xia Yirt)? (6)
j=1 i=1 ij
where NGPTS(!) is the total number of points on grid level [; N = NGPTS(l) x NPDE; At is the current
time step; u, is the time derivative of u which is approximated by first-order finite differences; w§ is the
time equivalent of the space weighting factor w]?; and «,; is given by

max

= (o Loy, t) ) ™)
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where u}*** is as before, and 7 is the user-specified time tolerance.

An integration step is rejected and retried at all levels if

mlax{uf} > 1.0. (8)

9 Example

For this routine two examples are presented, in Section 9.1 and Section 9.2. In the example programs
distributed to sites, there is a single example program for DO3RAF, with a main program:

* DO3RAF Example Program Text
Mark 19 Revised. NAG Copyright 1999.
. Parameters ..
INTEGER NOUT
PARAMETER (NQUT=6)
* .. External Subroutines ..
EXTERNAL EX1, EX2
* .. Executable Statements ..
WRITE (NOUT,*) ’DO3RAF Example Program Results’
CALL EX1
CALL EX2
STOP
END

The code to solve the two example problems is given in the subroutines EX1 and EX2, in Section 9.1.1
and Section 9.2.1 respectively.

9.1 Example 1

This example stems from combustion theory and is a model for a single, one-step reaction of a mixture
of two chemicals [5]. The PDE for the temperature of the mixture u is

ou 0?u  0*u 5
5 d<@+0—yﬂ> +D(1+a—u)exp <E|)

for 0 < z,y < 1andt > 0, with initial conditions u(z,y,0) =1 for 0 < z,y < 1, and boundary conditions

u,(0,y,t) = 0,u(l,y,t) =1 for 0<y<1,

uy(ac,O,t) =0,u(z,1,t) =1 for 0<x<1.

The heat release parameter o = 1, the Damkohler number D = Rexp(d)/(ad), the activation energy §
= 20, the reaction rate R = 5, and the diffusion parameter d = 0.1.

For small times the temperature gradually increases in a circular region about the origin, and at about
t = 0.24 ‘ignition’ occurs causing the temperature to suddenly jump from near unity to 1 4+ «, and a
reaction front forms and propagates outwards, becoming steeper. Thus during the solution, just one grid
level is used up to the ignition point, then two levels, and then three as the reaction front steepens.

9.1.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

SUBROUTINE EX1

* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
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INTEGER MXLEV, NPDE, NPTS
PARAMETER (MXLEV=3,NPDE=1,NPTS=2000)
INTEGER LENIWK, LENRWK, LENLWK
PARAMETER (LENIWK=NPTS* (5%MXLEV+14)+2+7*MXLEV,
+ LENRWK=NPTS*NPDE* (5*MXLEV+9+18*NPDE) +NPTS*2,
+ LENLWK=NPTS+1)
. Scalars in Common ..
real ALPHA, D, DELTA, DIFF, REAC
INTEGER I0UT
. Arrays in Common ..
real TWANT (2)
. Local Scalars ..
real TOLS, TOLT, TOUT, TS, XMAX, XMIN, YMAX, YMIN
INTEGER I, IFAIL, IND, ITRACE, J, MAXLEV, NX, NY
. Local Arrays ..
real DT(3), OPTR(3,NPDE), RWK(LENRWK)
INTEGER IWK(LENIWK), OPTI(4)
LOGICAL LWK (LENLWK)
. External Subroutines ..
EXTERNAL BNDRY1, DO3RAF, MONIT1, PDEF1, PDEIV1
. Intrinsic Functions ..
INTRINSIC EXP
. Common blocks ..
COMMON /0TIME1/TWANT, IOUT
COMMON /PARAM1/ALPHA, DELTA, REAC, DIFF, D
. Save statement ..
SAVE /OTIME1/, /PARAM1/

. Executable Statements ..
WRITE (NOUT,*)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Example 1°
WRITE (NOUT,*)

Problem Parameters

ALPHA = 1.0e0

DELTA = 20.0e0

REAC = 5.0e0

DIFF = 0.1e0

D = REAC*EXP(DELTA)/ (ALPHA*DELTA)

IND = 0

ITRACE = 0O

TS = 0.0e0
DT(1) = 0.1le-2
DT(2) = 0.0e0
DT(3) = 0.0e0

TOUT = 0.24e0
TWANT (1) = 0.24e0
TWANT(2) = 0.25e0
XMIN = 0.0e0

XMAX 1.0e0
YMIN = 0.0e0
YMAX = 1.0e0
NX = 21

NY = 21

TOLS = 0.5e0
TOLT = 0.01e0
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DO 20I =1, 4
0

OPTI(I) =

20 CONTINUE
DO 60 J = 1, NPDE

40

DO 40 I =1, 3
OPTR(I,J) = 1.0e0
CONTINUE

60 CONTINUE

DO 120 IOUT = 1, 2

+

+

80

+
100

IFAIL = -1

TOUT = TWANT(IOUT)

CALL DO3RAF (NPDE,TS,TOUT,DT,XMIN,XMAX,YMIN, YMAX,NX,NY, TOLS,
TOLT,PDEF1,BNDRY1,PDEIV1,MONIT1,0PTI,OPTR,RVK,
LENRWK , IWK, LENIWK , LWK , LENLWK , ITRACE, IND, IFAIL)

Print statistics

WRITE (NOUT,’(’’ Statistics:’’)?’)

WRITE (NOUT,’(’’ Time = ’’,F8.4)°) TS

WRITE (NOUT,’(’’ Total number of accepted timesteps =’’, I5)’)
IWK (1)

WRITE (NOUT,’(’’ Total number of rejected timesteps =’’, I5)’)
IWK(2)

WRITE (NOUT,*)
WRITE (NOUT,

2 (2 Total number of EDED)
WRITE (NOUT,

1 Residual Jacobian Newton ’° , 77 Lin sys’’)’

)
WRITE (NOUT,

(2 evals evals iters 7’ , 2 iters’?’)’

)
WRITE (NOUT,’(’’ At level ’’)?)
MAXLEV = 3
DO 80 J = 1, MAXLEV
IF (IWK(J+2).NE.0) WRITE (NOUT,’(I8,4I10)’) J, IWK(J+2),
IWK (J+2+MAXLEV) , IWK(J+2+2+«MAXLEV), IWK(J+2+3*MAXLEV)

CONTINUE
WRITE (NOUT,*)
WRITE (NOUT,

(2 Maximum number?’’, ? o f’’)?)
WRITE (NOUT,
20 Newton iters Lin sys iters ’’)’)

WRITE (NOUT,’(’’ At level ’’)°’)
DO 100 J = 1, MAXLEV
IF (IWK(J+2).NE.O) WRITE (NOUT,’(I8,2I14)’) J,
IWK(J+2+4*MAXLEV) , IWK(J+2+5*MAXLEV)
CONTINUE
WRITE (NOUT,*)

120 CONTINUE

RETURN
END
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SUBROUTINE PDEIV1(NPTS,NPDE,T,X,Y,U)
. Scalar Arguments ..

real T

INTEGER NPDE, NPTS
. Array Arguments ..

real U(NPTS,NPDE), X(NPTS), Y(NPTS)
. Local Scalars ..

INTEGER I

. Executable Statements ..

DO 20 I =1, NPTS
U(I,1) = 1.0e0

CONTINUE

RETURN

END

SUBROUTINE PDEF1(NPTS,NPDE,T,X,Y,U,UT,UX,UY,UXX,UXY,UYY,RES)
. Scalar Arguments ..

real T
INTEGER NPDE, NPTS
. Array Arguments ..
real RES(NPTS,NPDE), U(NPTS,NPDE), UT(NPTS,NPDE),
+ UX(NPTS,NPDE) , UXX(NPTS,NPDE), UXY(NPTS,NPDE),
+ UY(NPTS,NPDE), UYY(NPTS,NPDE), X(NPTS), Y(NPTS)
. Scalars in Common ..
real ALPHA, D, DELTA, DIFF, REAC
. Local Scalars ..
INTEGER I
. Intrinsic Functions ..
INTRINSIC EXP
. Common blocks ..
COMMON /PARAM1/ALPHA, DELTA, REAC, DIFF, D
. Save statement ..
SAVE /PARAM1/

. Executable Statements ..
DO 20 I = 1, NPTS
RES(I,1) = UT(I,1) - DIFF*(UXX(I,1)+UYY(I,1)) -
+ D*(1.0e0+ALPHA-U(I,1))*EXP(-DELTA/U(I,1))
CONTINUE

RETURN
END

SUBROUTINE BNDRY1(NPTS,NPDE,T,X,Y,U,UT,UX,UY,NBPTS,LBND,RES)
. Scalar Arguments ..

real T
INTEGER NBPTS, NPDE, NPTS
. Array Arguments ..
real RES(NPTS,NPDE), U(NPTS,NPDE), UT(NPTS,NPDE),
+ UX (NPTS,NPDE) , UY(NPTS,NPDE), X(NPTS), Y(NPTS)
INTEGER LBND (NBPTS)
. Local Scalars ..
real TOL
INTEGER I, J
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* * x*

20

. External Functioms ..

real X02AJF

EXTERNAL X02AJF
. Intrinsic Functions ..

INTRINSIC ABS

. Executable Statements ..
TOL = 10.e0*xX02AJF()

DO 20 I = 1, NBPTS
J = LBND(I)
IF (ABS(X(J)).LE.TOL) THEN
RES(J,1) = UX(J,1)
ELSE IF (ABS(X(J)-1.0e0).LE.TOL) THEN
RES(J,1) = U(J,1) - 1.0e0
ELSE IF (ABS(Y(J)).LE.TOL) THEN
RES(J,1) = UY(J,1)
ELSE IF (ABS(Y(J)-1.0e0).LE.TOL) THEN
RES(J,1) = U(J,1) - 1.0e0
END IF
CONTINUE

RETURN
END

SUBROUTINE MONIT1(NPDE,T,DT,DTNEW,TLAST,NLEV,NGPTS,XPTS,YPTS,LSOL,

+ SOL,IERR)
. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
. Scalar Arguments ..
real DT, DINEW, T
INTEGER IERR, NLEV, NPDE
LOGICAL TLAST
. Array Arguments ..
real SOL(*), XPTS(*), YPTS(x*)
INTEGER LSOL(NLEV), NGPTS(NLEV)
. Scalars in Common ..
INTEGER I0UT
. Arrays in Common ..
real TWANT (2)
. Local Scalars ..
INTEGER I, IPSOL, IPT, LEVEL, NPTS
. Common blocks ..
COMMON /0TIME1/TWANT, IOUT
. Save statement ..
SAVE /OTIME1/

. Executable Statements ..
IF (TLAST) THEN
Print solution

IF (IOUT.EQ.2) THEN
WRITE (NOUT,
+7(°? Solution at every 4th grid point ’’, ’?in level 1 at time
+))’ F8‘4’)):))))) T
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END IF

RETURN
END

WRITE (NOUT,*)

D03 — Partial Differential Equations

WRITE (NOUT,’(7X,’’x’’,10X,’’y’’,8X,’ approx u’’)’)

WRITE (NOUT,*)

LEVEL = 1
NPTS = NGPTS(LEVEL)
IPSOL = LSOL(LEVEL)
IPT = 1
DO 20 I = 1, NPTS, 4

WRITE (NOUT,*)
END IF

9.1.2 Program Data

None.

9.1.3 Program Results

YPTS(IPT+I-1), SOL(IPSOL+I)
CONTINUE

DO3RAF Example Program Results

Example 1

Statistics:

Time =  0.2400

Total number of accepted timesteps =

Total number of rejected timesteps

Residual Jacobian
evals evals

At level
1 600 75

At level
1

Total number of

Newton
iters

150

Maximum number

Newton iters

Lin sys it

2

75

Lin sys
iters

159

o f
ers

WRITE (NOUT,’(3(1X,D11.4))’) XPTS(IPT+I-1),

Solution at every 4th grid point in level 1 at time 0.2500:

X

.0000E+00
.2000E+00
.4000E+00
.6000E+00
.8000E+00
.1000E+01
.1500E+00
.3500E+00

O O O O O OO o

DO3RAF.18

O O O O O O OO

y

.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.5000E-01
.5000E-01

approx u

O O O O O OO o

.2000E+01
.2000E+01
.2000E+01
.2000E+01
.1240E+01
.1000E+01
.2000E+01
.2000E+01
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.5500E+00
.7500E+00
.9500E+00
.1000E+00
.3000E+00
.5000E+00
.7000E+00
.9000E+00
.5000E-01
.2500E+00
.4500E+00
.6500E+00
.8500E+00
.0000E+00
.2000E+00
.4000E+00
.6000E+00
.8000E+00
.1000E+01
.1500E+00
.3500E+00
.5500E+00
.7500E+00
.9500E+00
.1000E+00
.3000E+00
.5000E+00
.7000E+00
.9000E+00
.5000E-01
.2500E+00
.4500E+00
.6500E+00
.8500E+00
.0000E+00
.2000E+00
.4000E+00
.6000E+00
.8000E+00
.1000E+01
.1500E+00
.3500E+00
.5500E+00
.7500E+00
.9500E+00
.1000E+00
.3000E+00
.5000E+00
.7000E+00
.9000E+00
.5000E-01
.2500E+00
.4500E+00
.6500E+00
.8500E+00
.0000E+00
.2000E+00
.4000E+00

[eeleolNeolNeolNolNolNoloNoNoNoNoNoNoNoNoNoNoNoNoNo oo NoNoNoNeoNo oo NoNo oo No oo No oo NoNo oo No oo o NoNeo oo No oo Neo o]

[NP3390/19/pdf]

O O O OO O OO ODODODOOODODODODODODODODODODODODODODODODODODODODODODODODODODODODODODODODIODOOOOOOOOOOOoOOo

.5000E-01
.5000E-01
.5000E-01
.1000E+00
.1000E+00
.1000E+00
.1000E+00
.1000E+00
.1500E+00
.1500E+00
.1500E+00
.1500E+00
.1500E+00
.2000E+00
.2000E+00
.2000E+00
.2000E+00
.2000E+00
.2000E+00
.2500E+00
.2500E+00
.2500E+00
.2500E+00
.2500E+00
.3000E+00
.3000E+00
.3000E+00
.3000E+00
.3000E+00
.3500E+00
.3500E+00
.3500E+00
.3500E+00
.3500E+00
.4000E+00
.4000E+00
.4000E+00
.4000E+00
.4000E+00
.4000E+00
.4500E+00
.4500E+00
.4500E+00
.4500E+00
.4500E+00
.5000E+00
.5000E+00
.5000E+00
.5000E+00
.5000E+00
.5500E+00
.5500E+00
.5500E+00
.5500E+00
.5500E+00
.6000E+00
.6000E+00
.6000E+00

e eleolNoNeolNeolNolNolNoNoNoNoNoNoNoNoNoNoNoNoNoNo oo NoNoNoNeoNo oo NoNoNoBoNoNoNoNo oo NoNoNoNoNoNoNo o NoNo oo Neo oo Neo o]

.2000E+01
.1645E+01
.1048E+01
.2000E+01
.2000E+01
.2000E+01
.1999E+01
.1097E+01
.2000E+01
.2000E+01
.2000E+01
.2000E+01
.1154E+01
.2000E+01
.2000E+01
.2000E+01
.2000E+01
.1240E+01
.1000E+01
.2000E+01
.2000E+01
.2000E+01
.1635E+01
.1048E+01
.2000E+01
.2000E+01
.2000E+01
.1999E+01
.1097E+01
.2000E+01
.2000E+01
.2000E+01
.2000E+01
.1163E+01
.2000E+01
.2000E+01
.2000E+01
.2000E+01
.1234E+01
.1000E+01
.2000E+01
.2000E+01
.2000E+01
.1508E+01
.1048E+01
.2000E+01
.2000E+01
.2000E+01
.1993E+01
.1095E+01
.2000E+01
.2000E+01
.2000E+01
.2000E+01
.1145E+01
.2000E+01
.2000E+01
.2000E+01
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.6000E+00
.8000E+00
.1000E+01
.1500E+00
.3500E+00
.5500E+00
.7500E+00
.9500E+00
.1000E+00
.3000E+00
.5000E+00
.7000E+00
.9000E+00
.5000E-01
.2500E+00
.4500E+00
.6500E+00
.8500E+00
.0000E+00
.2000E+00
.4000E+00
.6000E+00
.8000E+00
.1000E+01
.1500E+00
.3500E+00
.5500E+00
.7500E+00
.9500E+00
.1000E+00
.3000E+00
.5000E+00
.7000E+00
.9000E+00
.5000E-01
.2500E+00
.4500E+00
.6500E+00
.8500E+00
.0000E+00
.2000E+00
.4000E+00
.6000E+00
.8000E+00
.1000E+01

[eeolNeolNeolNeolNeolNolNolNolNolNolNolNeolNolNolNolNoNoNooNooNoNoNoNoNo o NoNo oo Neo oo NeoNoNoNoNeoNeo oo Neo o]

Statistics:

Time =  0.2500
Total number of accepted timesteps =
Total number of rejected timesteps

O OO OO OO OO ODODODODODODODODODODODODODODODODODODODODODODODODODODODOOOOOOOOOOO

.6000E+00
.6000E+00
.6000E+00
.6500E+00
.6500E+00
.6500E+00
.6500E+00
.6500E+00
.7T000E+00
.7T000E+00
.7T000E+00
.7TO00E+00
.7TO00E+00
.7500E+00
.7500E+00
.7500E+00
.7500E+00
.7500E+00
.8000E+00
.8000E+00
.8000E+00
.8000E+00
.8000E+00
.8000E+00
.8500E+00
.8500E+00
.8500E+00
.8500E+00
.8500E+00
.9000E+00
.9000E+00
.9000E+00
.9000E+00
.9000E+00
.9500E+00
.9500E+00
.9500E+00
.9500E+00
.9500E+00
.1000E+01
.1000E+01
.1000E+01
.1000E+01
.1000E+01
.1000E+01

.2000E+01
.1200E+01
.1000E+01
.2000E+01
.2000E+01
.2000E+01
.1253E+01
.1044E+01
.1999E+01
.1999E+01
.1993E+01
.1279E+01
.1082E+01
.1645E+01
.1635E+01
.1508E+01
.1263E+01
.1109E+01
.1240E+01
.1240E+01
.1234E+01
.1200E+01
.1119E+01
.1000E+01
.1154E+01
.1153E+01
.1145E+01
.1109E+01
.1029E+01
.1097E+01
.1097E+01
.1095E+01
.1082E+01
.1039E+01
.1048E+01
.1048E+01
.1048E+01
.1044E+01
.1029E+01
.1000E+01
.1000E+01
.1000E+01
.1000E+01
.1000E+01
.1000E+01

[eelNeolNeolNeolNeolNolNolNolNolNolNolNeolNolNolNolNolNolNolNoNooNoNoNoNoNoNeoNoNo oo Neo oo Neo o NoNoNeoNeo oo Neo o]

Total number of

Residual Jacobian Newton
evals evals iters
At level
1 1468 181 382
2 662 82 170
3 176 22 44
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Maximum number of

Newton iters Lin sys iters
At level
1 4 2
2 4 1
3 2 1

9.2 Example 2

This example is taken from a multispecies food web model, in which predator-prey relationships in a
spatial domain are simulated [6]. In this example there is just one species each of prey and predator, and
the two PDEs for the concentrations ¢; and ¢, of the prey and the predator respectively are

Oc 9% 9
8_151 =cy(by tagc +appey) +d; (8721 + 8y21) )
9%c d%c
0=cy(b dy | =2 2
Co(by + A9y ¢y + agecy) + dy (axg + B ) )
with a,; = a9y = —1, a1 = —0.5 X 107%, and Qg = 10*, and

by = 1+ azy + Bsin(4dnz) sin(4ny),
where o = 50 and 3 = 300, and b, = —b;.

The initial conditions are taken to be simple peaked functions which satisfy the boundary conditions and
very nearly satisfy the PDEs:

c; = 10+ (16z(1 — 2)y(1 — y))?,

Cy = by +ag ¢y,
and the boundary conditions are of Neumann type, i.e., zero normal derivatives everywhere.

During the solution a number of peaks and troughs develop across the domain, and so the number of
levels required increases with time. Since the solution varies rapidly in space across the whole of the
domain, refinement at intermediate levels tends to occur at all points of the domain.

9.2.1 Program Text
Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.

Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

SUBROUTINE EX2

* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER MXLEV, NPDE, NPTS
PARAMETER (MXLEV=4 ,NPDE=2,NPTS=8000)
INTEGER LENIWK, LENRWK, LENLWK
PARAMETER (LENIWK=NPTS* (5*MXLEV+14)+2+7*MXLEV,
+ LENRWK=NPTS*NPDE* (5*MXLEV+9+18*NPDE) +NPTS*2,
+ LENLWK=NPTS+1)
* .. Scalars in Common ..
real ALPHA, BETA, PI
INTEGER I0UT
* .. Arrays in Common ..
real TWANT (2)
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. Local Scalars ..

D03 — Partial Differential Equations

real TOLS, TOLT, TOUT, TS, XMAX, XMIN, XX, YMAX, YMIN
INTEGER I, IFAIL, IND, ITRACE, J, MAXLEV, NX, NY
. Local Arrays ..
real DT(3), OPTR(3,NPDE), RWK(LENRWK)
INTEGER IWK(LENIWK), OPTI(4)
LOGICAL LWK (LENLWK)
. External Functioms ..
real XO01AAF
EXTERNAL XO01AAF
. External Subroutines ..
EXTERNAL BNDRY2, DO3RAF, MONIT2, PDEF2, PDEIV2
. Common blocks ..
COMMON /OTIME2/TWANT, IOUT
COMMON /PARAM2/ALPHA, BETA, PI

. Save statement ..

SAVE /0TIME2/, /PARAM2/
. Executable Statements ..

WRITE (NOUT,*)
WRITE (NOUT,*)

WRITE (NOUT,*) ’Example 2’

WRITE (NOUT,*)

XX = 0.0e0

PI XO01AAF (XX)
ALPHA = 50.0e0
BETA = 300.0e0

IND = O
ITRACE = 0O
TS = 0.0e0

TWANT(1) = 0.01e0
TWANT(2) = 0.025€0

DT(1) = 0.5e-3

DT(2) = 1.0e-6

DT(3) = 0.0e0

XMIN = 0.0e0

XMAX = 1.0e0

YMIN = 0.0e0

YMAX = 1.0e0

TOLS = 0.075e0

TOLT = 0.1e0

NX = 11

NY = 11

OPTI(1) = 4

DO 20 I =2, 4
OPTI(I) =0

CONTINUE

OPTR(1,1) = 250.0e0

OPTR(1,2) = 1.5e6

DO 60 J = 1, NPDE
DO 40 I =2, 3
OPTR(I,J) = 1.0e0
CONTINUE
CONTINUE

DO 120 IOUT = 1, 2
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+

+

80

+
100

IFAIL = -1

TOUT = TWANT(IOUT)

CALL DO3RAF (NPDE,TS,TOUT,DT,XMIN,XMAX,YMIN, YMAX,NX,NY, TOLS,
TOLT, PDEF2,BNDRY2,PDEIV2,MONIT2,0PTI,OPTR,RVK,
LENRWK, IWK, LENIWK ,LWK , LENLWK , ITRACE, IND, IFAIL)

Print statistics

MAXLEV = 0OPTI(1)
WRITE (NOUT,’(’’ Statistics:’’)?)

WRITE (NOUT,’(’’ Time = ’’,F8.4)°) TS

WRITE (NOUT,’(’’ Total number of accepted timesteps =’’, I5)’)
IWK(1)

WRITE (NOUT,’(’’ Total number of rejected timesteps =’’, I5)’)
IWK(2)

WRITE (NOUT,*)
WRITE (NOUT,

12 Total number of EDED
WRITE (NOUT,

(0 Residual Jacobian Newton ’° , 77 Lin sys’’)’

)
WRITE (NOUT,

2 (0 evals evals iters , 7 iters’’)’

)
WRITE (NOUT,’(’’ At level ’’)’)
MAXLEV = OPTI(1)
DO 80 J = 1, MAXLEV
IF (IWK(J+2).NE.0) WRITE (NOUT,’(I6,4I10)’) J, IWK(J+2),
IWK (J+2+MAXLEV), IWK(J+2+2+MAXLEV), IWK(J+2+3*MAXLEV)

CONTINUE
WRITE (NOUT,*)
WRITE (NOUT,

2 (0 Maximum number >, > o f?’)?)
WRITE (NOUT,
20 Newton iters Lin sys iters ’’)’)

WRITE (NOUT,’(’’ At level ’’)’)
DO 100 J = 1, MAXLEV
IF (IWK(J+2).NE.O0) WRITE (NOUT,’(I6,2I14)°) J,
IWK (J+2+4+MAXLEV) , IWK(J+2+5*MAXLEV)
CONTINUE
WRITE (NOUT,=*)

120 CONTINUE

RETURN
END

SUBROUTINE PDEIV2(NPTS,NPDE,T,X,Y,U)

* .. Scalar Arguments ..

real T

INTEGER NPDE, NPTS
* .. Array Arguments ..

real U(NPTS,NPDE) , X(NPTS), Y(NPTS)
* .. Scalars in Common ..

real ALPHA, BETA, PI
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. Local Scalars ..

real
INTEGER

B2, FP
I

. Intrinsic Functions ..

INTRINSIC

SIN

. Common blocks ..

COMMON

/PARAM2/ALPHA, BETA, PI

. Save statement ..

SAVE
. Executable

FP = 4.0e0%PI

/PARAM2/
Statements ..

DO 20 I =1, NPTS
B2 = -1.0e0 - ALPHA*X(I)*Y(I) - BETA*SIN(FP*X(I))*SIN(FP*Y(I))

U(I,1) = 1.

Oel + (16.0e0*X(I)*(1.0e0-X(I))*Y(I)*(1.0e0-Y(I)))

*%2
U(I,2) = B2 + 1.0e4xU(I,1)

CONTINUE

RETURN
END

SUBROUTINE PDEF2(NPTS,NPDE,T,X,Y,U,UT,UX,UY,UXX,UXY,UYY,RES)
. Scalar Arguments ..

real
INTEGER

T
NPDE, NPTS

. Array Arguments ..

real

. Scalars in
real

RES(NPTS,NPDE), U(NPTS,NPDE), UT(NPTS,NPDE),

UX(NPTS,NPDE) , UXX(NPTS,NPDE), UXY(NPTS,NPDE),

UY(NPTS,NPDE), UYY(NPTS,NPDE), X(NPTS), Y(NPTS)
Common ..

ALPHA, BETA, PI

. Local Scalars ..

real
INTEGER

B1, B2, FP
I

. Intrinsic Functions ..

INTRINSIC

SIN

. Common blocks ..

COMMON

/PARAM2/ALPHA, BETA, PI

. Save statement ..

SAVE
. Executable
FP = 4.0e0%*PI

/PARAM2/
Statements ..

DO 20 I =1, NPTS

Bl = 1.0e0
B2 = -B1
RES(I,1) =

RES(I,2) =
CONTINUE

RETURN
END

+ ALPHA*X(I)*Y(I) + BETA*SIN(FP*X(I))*SIN(FP*Y(I))

UT(I,1) - (UXX(I,1)+UYY(I,1)) - U(I,1)*(B1-U(I,1)
-0.5e-6*U(I,2))

-0.05e0* (UXX(I,2)+UYY(I,2)) - U(I,2)
*(B2+1.0e4*U(I,1)-U(I,2))
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SUBROUTINE BNDRY2(NPTS,NPDE,T,X,Y,U,UT,UX,UY,NBPTS,LBND,RES)

* .. Scalar Arguments ..
real T
INTEGER NBPTS, NPDE, NPTS
* .. Array Arguments ..
real RES(NPTS,NPDE), U(NPTS,NPDE), UT(NPTS,NPDE),
+ UX(NPTS,NPDE), UY(NPTS,NPDE), X(NPTS), Y(NPTS)
INTEGER LBND (NBPTS)
* .. Local Scalars ..
real TOL
INTEGER I, J
* .. External Functions ..
real X02AJF
EXTERNAL X02AJF
* .. Intrinsic Functioms ..
INTRINSIC ABS

. Executable Statements ..
TOL = 10.e0*X02AJF()

DO 20 I = 1, NBPTS

J = LBND(I)

IF (ABS(X(J)).LE.TOL .OR. ABS(X(J)-1.0e0).LE.TOL) THEN
RES(J,1) = UX(J,1)
RES(J,2) = UX(J,2)

ELSE IF (ABS(Y(J)).LE.TOL .OR. ABS(Y(J)-1.0e0).LE.TOL) THEN
RES(J,1) = UY(J,1)
RES(J,2) = UY(J,2)

END IF

20 CONTINUE

RETURN
END

SUBROUTINE MONIT2(NPDE,T,DT,DTNEW,TLAST,NLEV,NGPTS,XPTS,YPTS,LSOL,

+ SOL,IERR)
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalar Arguments ..
real DT, DTNEW, T
INTEGER IERR, NLEV, NPDE
LOGICAL TLAST
* .. Array Arguments ..
real SOL(*), XPTS(*), YPTS(x)
INTEGER LSOL(NLEV), NGPTS(NLEV)
* .. Scalars in Common ..
INTEGER I0UT
* .. Arrays in Common ..
real TWANT (2)
* .. Local Scalars ..
INTEGER I, IPSOL, IPT, LEVEL, NPTS
* .. Common blocks ..
COMMON /OTIME2/TWANT, IOUT
* .. Save statement ..
SAVE /0TIME2/
* .. Executable Statements ..
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IF (TLAST) THEN
* Print solution

IF (IOUT.EQ.2) THEN
WRITE (NOUT,
+’(’? Solution at every 2nd grid point ’’, >?in level 1 at time
+))’ F8.4,”2”)’) T
WRITE (NOUT,*)
WRITE (NOUT,

+ *(7X,’°x’’,10X,’’y’?,9X, ’ >approx cl1’’,3X,’ approx c2’’)’)
WRITE (NOUT,*)
LEVEL = 1

NPTS = NGPTS(LEVEL)

IPSOL = LSOL(LEVEL)

IPT = 1

DO 20 I = 1, NPTS, 2

WRITE (NOUT,’(2(1X,D11.4),2X,D11.4,2X,D11.4)’)
+ XPTS(IPT+I-1), YPTS(IPT+I-1), SOL(IPSOL+I),
+ SOL (IPSOL+NPTS+I)
20 CONTINUE
WRITE (NOUT,*)
END IF

END IF

RETURN
END

9.2.2 Program Data
None.

9.2.3 Program Results

DO3RAF Example Program Results

Example 2
Statistics:
Time = 0.0100
Total number of accepted timesteps = 14
Total number of rejected timesteps = 0
Total number of
Residual Jacobian Newton Lin sys
evals evals iters iters
At level
1 196 14 28 42
2 168 12 24 34
3 70 5 10 16
Maximum number of
Newton iters Lin sys iters
At level
1 2 2
2 2 2
3 2 3
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Solution at every 2nd grid point in level 1 at time

X

.0000E+00
.2000E+00
.4000E+00
.6000E+00
.8000E+00
.1000E+01
.1000E+00
.3000E+00
.5000E+00
.7000E+00
.9000E+00
.0000E+00
.2000E+00
.4000E+00
.6000E+00
.8000E+00
.1000E+01
.1000E+00
.3000E+00
.5000E+00
.7000E+00
.9000E+00
.0000E+00
.2000E+00
.4000E+00
.6000E+00
.8000E+00
.1000E+01
.1000E+00
.3000E+00
.5000E+00
.7000E+00
.9000E+00
.0000E+00
.2000E+00
.4000E+00
.6000E+00
.8000E+00
.1000E+01
.1000E+00
.3000E+00
.5000E+00
.7000E+00
.9000E+00
.0000E+00
.2000E+00
.4000E+00
.6000E+00
.8000E+00
.1000E+01
.1000E+00
.3000E+00
.5000E+00

ol eoleolNeoNolNolNoNolNoNoNolNoNoNoNoNoNoNoNoRoNoNoNoNoNoNo oo NoNo o NoNo oo No oo NeoNeo o oo Neo oo NeoNeo oo No o Nel
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y

.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.1000E+00
.1000E+00
.1000E+00
.1000E+00
.1000E+00
.2000E+00
.2000E+00
.2000E+00
.2000E+00
.2000E+00
.2000E+00
.3000E+00
.3000E+00
.3000E+00
.3000E+00
.3000E+00
.4000E+00
.4000E+00
.4000E+00
.4000E+00
.4000E+00
.4000E+00
.5000E+00
.5000E+00
.5000E+00
.5000E+00
.5000E+00
.6000E+00
.6000E+00
.6000E+00
.6000E+00
.6000E+00
.6000E+00
.7TO00E+00
.7TO00E+00
.7T000E+00
.7T000E+00
.7T000E+00
.8000E+00
.8000E+00
.8000E+00
.8000E+00
.8000E+00
.8000E+00
.9000E+00
.9000E+00
.9000E+00

O O O OO O OO ODODODODOODODODODODODODODODODODODODODODODODODODODODODODODODODODODOO0OO0ODODOOOOOOOO

approx cl

.6615E+02
.5138E+02
.1274E+02
.5217E+02
.1684E+02
.4618E+01
.8832E+02
.1897E+02
.3109E+02
.5115E+02
.6498E+01
.5138E+02
.4480E+02
.1763E+02
.4849E+02
.2308E+02
.1998E+02
.1897E+02
.3745E+02
.2815E+02
.2379E+02
.6076E+02
.1274E+02
.1763E+02
.5816E+02
.1425E+02
.5783E+02
.6492E+02
.3109E+02
.2815E+02
.2966E+02
.3422E+02
.4004E+02
.5217E+02
.4849E+02
.1425E+02
.7T001E+02
.2397E+02
.1981E+02
.5115E+02
.2379E+02
.3422E+02
.5069E+02
.3143E+02
.1684E+02
.2308E+02
.5783E+02
.2397E+02
.7T164E+02
.8397E+02
.6498E+01
.6076E+02
.4004E+02

approx c2

ol eleolNoNeolNolNolNolNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNeoNoNoNoNoNoNoNoNo oo No oo NoNo oo Neo oo oo Neo oo Neo o Nel

.6615E+06
.5137E+06
.1275E+06
.5217E+06
.1684E+06
.4619E+05
.8829E+06
.1898E+06
.3109E+06
.5114E+06
.6526E+05
.5137E+06
.4479E+06
.1764E+06
.4848E+06
.2309E+06
.1998E+06
.1898E+06
.3744E+06
.2815E+06
.2380E+06
.6074E+06
.1275E+06
.1764E+06
.5813E+06
.1428E+06
.5782E+06
.6492E+06
.3109E+06
.2815E+06
.2966E+06
.3422E+06
.4003E+06
.5217E+06
.4848E+06
.1428E+06
.6998E+06
.2398E+06
.1981E+06
.5114E+06
.2380E+06
.3422E+06
.5067E+06
.3145E+06
.1684E+06
.2309E+06
.5781E+06
.2398E+06
.T162E+06
.8397E+06
.6526E+05
.6074E+06
.4003E+06

0.0250:
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0.7000E+00 0.9000E+00  0.3143E+02 0.3145E+06
0.9000E+00 0.9000E+00  0.1403E+03  0.1403E+07
0.0000E+00 0.1000E+01  0.4618E+01 0.4619E+05
0.2000E+00 0.1000E+01 0.1998E+02  0.1998E+06
0.4000E+00 0.1000E+01 0.6492E+02  0.6491E+06
0.6000E+00 0.1000E+01 0.1980E+02  0.1980E+06
0.8000E+00 0.1000E+01  0.8397E+02 0.8396E+06
0.1000E+01 0.1000E+01  0.1075E+03  0.1075E+07
Statistics:
Time = 0.0250
Total number of accepted timesteps = 29
Total number of rejected timesteps = 0
Total number of
Residual Jacobian Newton Lin sys
evals evals iters iters
At level
1 406 29 58 87
2 378 27 54 79
3 280 20 40 61
4 98 7 14 27
Maximum number of
Newton iters Lin sys iters
At level
1 2 2
2 2 2
3 2 3
4 2 3
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