E01BGF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

E01BGF evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points.

2 Specification

```
SUBROUTINE E01BGF(N, X, F, D, M, PX, PF, PD, IFAIL)

INTEGER

N, M, IFAIL

real

X(N), F(N), D(N), PX(M), PF(M), PD(M)
```

3 Description

This routine evaluates a piecewise cubic Hermite interpolant, as computed by E01BEF, at the points PX(i), for i = 1, 2, ..., m. The first derivatives at the points are also computed. If any point lies outside the interval from X(1) to X(N), values of the interpolant and its derivative are extrapolated from the nearest extreme cubic, and a warning is returned.

If values of the interpolant only, and not of its derivative, are required, E01BFF should be used.

The routine is derived from routine PCHFD in Fritsch [1].

4 References

[1] Fritsch F N (1982) PCHIP final specifications Report UCID-30194 Lawrence Livermore National Laboratory

5 Parameters

1:	N-INTEGER	Input
2:	X(N) — $real$ array	Input
3:	F(N) — $real$ array	Input
4:	$\mathrm{D}(\mathrm{N}) - real \; \mathrm{array}$	Input
	On entry: N, X, F and D must be unchanged from the previous call of E01BEF.	

5: M — INTEGER Input

On entry: m, the number of points at which the interpolant is to be evaluated.

Constraint: $M \geq 1$.

 $i = 1, 2, \dots, m$.

6: PX(M) — real array

On entry: the m values of x at which the interpolant is to be evaluated.

7: PF(M) — real array Output On exit: PF(i) contains the value of the interpolant evaluated at the point PX(i), for i = 1, 2, ..., m.

8: PD(M) — real array Output On exit: PD(i) contains the first derivative of the interpolant evaluated at the point PX(i), for

[NP3390/19/pdf] E01BGF.1

E01BGF E01 - Interpolation

9: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors detected by the routine:

```
IFAIL = 1
```

On entry, N < 2.

IFAIL = 2

The values of X(r), for r = 1, 2, ..., N, are not in strictly increasing order.

IFAIL = 3

On entry, M < 1.

IFAIL = 4

At least one of the points PX(i), for i = 1, 2, ..., M, lies outside the interval [X(1), X(N)], and extrapolation was performed at all such points. Values computed at these points may be very unreliable.

7 Accuracy

The computational errors in the arrays PF and PD should be negligible in most practical situations.

8 Further Comments

The time taken by the routine is approximately proportional to the number of evaluation points, m. The evaluation will be most efficient if the elements of PX are in non-decreasing order (or, more generally, if they are grouped in increasing order of the intervals [X(r-1), X(r)]). A single call of E01BGF with m > 1 is more efficient than several calls with m = 1.

9 Example

This example program reads in values of N, X, F and D, and calls E01BGF to compute the values of the interpolant and its derivative at equally spaced points.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

- * E01BGF Example Program Text
- * Mark 14 Revised. NAG Copyright 1989.
- * .. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER MMAX, NMAX
PARAMETER (MMAX=21,NMAX=50)

E01BGF.2 [NP3390/19/pdf]

E01 – Interpolation

```
.. Local Scalars ..
     real
      INTEGER
                       I, IFAIL, M, N, R
      .. Local Arrays ..
                       D(NMAX), F(NMAX), PD(MMAX), PF(MMAX), PX(MMAX),
     real
                       X(NMAX)
      .. External Subroutines ...
     EXTERNAL
                      E01BGF
      .. Intrinsic Functions ..
     INTRINSIC
                      MIN
      .. Executable Statements ..
      WRITE (NOUT,*) 'E01BGF Example Program Results'
     Skip heading in data file
     READ (NIN,*)
     READ (NIN,*) N
      IF (N.GT.O .AND. N.LE.NMAX) THEN
         DO 20 R = 1, N
            READ (NIN,*) X(R), F(R), D(R)
  20
         CONTINUE
         READ (NIN,*) M
         IF (M.GT.O .AND. M.LE.MMAX) THEN
            Compute M equally spaced points from X(1) to X(N).
            STEP = (X(N)-X(1))/(M-1)
            DO 40 I = 1, M
               PX(I) = MIN(X(1)+(I-1)*STEP,X(N))
  40
            CONTINUE
            IFAIL = 0
            CALL E01BGF(N,X,F,D,M,PX,PF,PD,IFAIL)
            WRITE (NOUT, *)
            WRITE (NOUT, *)
                                 Interpolated
                                                 Interpolated'
            WRITE (NOUT,*)
                                                   Derivative'
                     Abscissa
                                         Value
            DO 60 I = 1, M
               WRITE (NOUT,99999) PX(I), PF(I), PD(I)
   60
            CONTINUE
         END IF
     END IF
     STOP
99999 FORMAT (1X,2F15.4,1P,e15.3)
      END
```

9.2 Program Data

[NP3390/19/pdf] E01BGF.3

E01BGF

20.00 0.99999E+0 0.00000E+0 End of data points
11 M, the number of evaluation points

9.3 Program Results

E01BGF Example Program Results

	Interpolated	Interpolated
Abscissa	Value	Derivative
7.9900	0.0000	0.000E+00
9.1910	0.4640	6.060E-01
10.3920	0.9645	4.569E-02
11.5930	0.9965	9.917E-03
12.7940	0.9992	6.249E-04
13.9950	0.9998	2.708E-04
15.1960	0.9999	2.809E-05
16.3970	1.0000	2.034E-05
17.5980	1.0000	1.308E-05
18.7990	1.0000	6.297E-06
20.0000	1.0000	-3.388E-21

 $E01BGF.4~(last) \\ [NP3390/19/pdf]$