F04AFF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F04AFF calculates the accurate solution of a set of real symmetric positive-definite linear equations with multiple right-hand sides, AX = B, with iterative refinement, where A has been factorized by F03AEF.

2 Specification

```
SUBROUTINE FO4AFF(N, IR, A, IA, P, B, IB, EPS, X, IX, BB, IBB, K, 1 IFAIL)

INTEGER N, IR, IA, IB, IX, IBB, K, IFAIL

real A(IA,N), P(N), B(IB,IR), EPS, X(IX,IR), BB(IBB,IR)
```

3 Description

To solve a set of real linear equations AX = B where A is symmetric positive-definite, the routine must be preceded by a call to F03AEF which computes a Cholesky factorization of A as $A = LL^T$, where L is lower triangular. An approximation to X is then found by forward and backward substitution. The residual matrix R = B - AX is then calculated using **additional precision**, and a correction D to X is found by solving $LL^TD = R$. X is replaced by X + D, and this iterative refinement of the solution is repeated until full machine accuracy has been obtained.

4 References

[1] Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra Springer-Verlag

5 Parameters

1: N — INTEGER

On entry: n, the order of the matrix A.

2: IR — INTEGER

On entry: r, the number of right-hand sides.

3: A(IA.N) - real array

On entry: the upper triangle of the n by n positive-definite symmetric matrix A, and the sub-diagonal elements of its Cholesky factor L, as returned by F03AEF.

4: IA — INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F04AFF is called.

Constraint: IA \geq N.

5: P(N) - real array

On entry: the reciprocals of the diagonal elements of L, as returned by F03AEF.

6: B(IB,IR) — real array

On entry: the n by r right-hand side matrix B.

[NP3390/19/pdf] F04AFF.1

7: IB — INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which F04AFF is called.

Constraint: IB \geq N.

8: EPS-real Input

On entry: EPS must be set to the value of the machine precision.

9: X(IX,IR) - real array

Output

On exit: the n by r solution matrix X.

10: IX — INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F04AFF is called.

Constraint: IX > N.

11: $BB(IBB,IR) - real \operatorname{array}$

Output

On exit: the final n by r residual matrix R = B - AX.

12: IBB — INTEGER Input

On entry: the first dimension of the array BB as declared in the (sub)program from which F04AFF is called.

Constraint: IBB \geq N.

13: K — INTEGER Output

On exit: the number of iterations needed in the refinement process.

14: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

The matrix A is too ill-conditioned to produce a correctly rounded solution.

7 Accuracy

The computed solutions should be correct to full machine accuracy. For a detailed error analysis see Wilkinson and Reinsch [1] page 39.

8 Further Comments

The time taken by the routine is approximately proportional to n^2r .

F04AFF.2 [NP3390/19/pdf]

9 Example

To solve the set of linear equations AX = B where

$$A = \begin{pmatrix} 5 & 7 & 6 & 5 \\ 7 & 10 & 8 & 7 \\ 6 & 8 & 10 & 9 \\ 5 & 7 & 9 & 10 \end{pmatrix} \text{ and } B = \begin{pmatrix} 23 \\ 32 \\ 33 \\ 31 \end{pmatrix}.$$

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
FO4AFF Example Program Text
Mark 14 Revised. NAG Copyright 1989.
.. Parameters ..
INTEGER
                 NMAX, IR, IA, IB, IX, IBB
PARAMETER
                 (NMAX=8, IR=1, IA=NMAX, IB=NMAX, IX=NMAX, IBB=NMAX)
INTEGER
                 NIN, NOUT
PARAMETER
                 (NIN=5, NOUT=6)
.. Local Scalars ..
real
                 D1, EPS
INTEGER
                 I, ID, IFAIL, J, K, N
.. Local Arrays ..
real
                 A(IA,NMAX), B(IB,IR), BB(IBB,IR), P(NMAX),
                 X(IX,IR)
.. External Functions ..
real
                 X02AJF
EXTERNAL
                 XO2AJF
.. External Subroutines ..
EXTERNAL
                 FO3AEF, FO4AFF
.. Executable Statements ...
WRITE (NOUT,*) 'F04AFF Example Program Results'
Skip heading in data file
READ (NIN,*)
READ (NIN,*) N
WRITE (NOUT,*)
IF (N.GT.O .AND. N.LE.NMAX) THEN
   READ (NIN,*) ((A(I,J),J=1,N),I=1,N)
   IFAIL = 1
   Cholesky decomposition
   CALL FO3AEF(N,A,IA,P,D1,ID,IFAIL)
   IF (IFAIL.NE.O) THEN
      WRITE (NOUT, 99999) 'Error in FO3AEF. IFAIL =', IFAIL
   F.I.SF
      READ (NIN,*) ((B(I,J),J=1,IR),I=1,N)
      EPS = X02AJF()
      IFAIL = 1
      Accurate solution of linear equations
      CALL FO4AFF(N, IR, A, IA, P, B, IB, EPS, X, IX, BB, IBB, K, IFAIL)
      IF (IFAIL.NE.O) THEN
         WRITE (NOUT, 99999) 'Error in FO4AFF. IFAIL =', IFAIL
         WRITE (NOUT,*) 'Solution'
```

[NP3390/19/pdf] F04AFF.3

9.2 Program Data

```
FO4AFF Example Program Data
         7
    5
              6
                   5
    7
                   7
        10
              8
    6
         8
             10
                   9
    5
        7
             9
                  10
   23
        32
             33
                  31
```

9.3 Program Results

FO4AFF Example Program Results

Solution 1.0000 1.0000 1.0000

F04AFF.4 (last) [NP3390/19/pdf]