NAG Fortran Library Routine Document G05MJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details.

1 Purpose

G05MJF generates a vector of pseudo-random integers from the discrete binomial distribution with parameters m and p.

2 Specification

```
SUBROUTINE G05MJF(MODE, M, P, N, X, IGEN, ISEED, R, NR, IFAIL)

INTEGER MODE, M, N, X(N), IGEN, ISEED(4), NR, IFAIL

real P, R(NR)
```

3 Description

G05MJF generates n integers x_i from a discrete binomial distribution, where the probability of $x_i = I$ is

$$P(x_i = I) = \frac{m!}{I!(m-I)!} p^I \times (1-p)^{m-I}, \quad I = 0, 1, \dots, m,$$

where $0 \le m$ and $0 \le p \le 1$. This represents the probability of achieving I successes in m trials when the probability of success at a single trial is p.

The variates can be generated with or without using a search table and index. If a search table is used then it is stored with the index in a reference vector and subsequent calls to G05MJF with the same parameter values can then use this reference vector to generate further variates.

One of the initialisation routines G05KBF (for a repeatable sequence if computed sequentially) or G05KCF (for a non-repeatable sequence) must be called prior to the first call to G05MJF.

4 References

Knuth D E (1981) *The Art of Computer Programming (Volume 2)* (2nd Edition) Addison-Wesley Kendall M G and Stuart A (1969) *The Advanced Theory of Statistics (Volume 1)* (3rd Edition) Griffin

5 Parameters

1: MODE – INTEGER Input

On entry: a code for selecting the operation to be performed by the routine:

MODE = 0

Set up reference vector only.

MODE = 1

Generate variates using reference vector set up in a prior call to G05MJF.

MODE = 2

Set up reference vector and generate variates.

MODE = 3

Generate variates without using the reference vector.

Constraint: $0 \le MODE \le 3$.

[NP3546/20] G05MJF.1

2: M – INTEGER Input

On entry: the number of trials, m, of the distribution.

Constraint: $M \ge 0$.

3: P - real Input

On entry: the probability of success p of the binomial distribution.

Constraint: $0.0 \le P \le 1.0$.

4: N – INTEGER Input

On entry: the number, n, of pseudo-random numbers to be generated.

Constraint: $N \ge 1$.

5: X(N) – INTEGER array

Output

On exit: the n pseudo-random numbers from the specified binomial distribution.

6: IGEN – INTEGER Input

On entry: must contain the identification number for the generator to be used to return a pseudorandom number and should remain unchanged following initialisation by a prior call to one of the routines G05KBF or G05KCF.

7: ISEED(4) – INTEGER array

Input/Output

On entry: contains values which define the current state of the selected generator.

On exit: contains updated values defining the new state of the selected generator.

8: R(NR) - real array

Input/Output

On exit: the reference vector.

9: NR – INTEGER Input

On entry: the dimension of the array R as declared in the (sub)program from which G05MJF is called.

Suggested value: NR = $22 + 20\sqrt{M \times P(1-P)}$.

Constraints:

if MODE = 0 or 2, then

$$\begin{split} NR > & & min(M, INT[M \times P + 7.15\sqrt{M \times P(1-P)} + 1]) \\ & & - max(0, INT[M \times P - 7.15\sqrt{M \times P(1-P)} - 7.15]) + 6; \end{split}$$

if MODE = 1, then NR should remain unchanged from the previous call to G05MJF; if MODE = 3, then R is not referenced.

10: IFAIL – INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter should refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended value is 0. When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

G05MJF.2 [NP3546/20]

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:

```
IFAIL = 1 \\ On entry, \ N < 1.
IFAIL = 2 \\ On entry, \ NR \ is too \ small \ when \ MODE = 0 \ or \ 2 \ (see \ Section \ 5).
IFAIL = 3 \\ On \ entry, \ P < 0.0 \\ or \ P > 1.0.
IFAIL = 4 \\ On \ entry, \ M < 0.
IFAIL = 5 \\ On \ entry, \ MODE < 0 \\ or \ MODE > 3.
IFAIL = 6
```

M or P is not the same as when R was set up in a previous call with MODE = 0 or 2.

7 Accuracy

Not applicable.

8 Further Comments

None.

9 Example

The example program prints 20 pseudo-random integers from a binomial distribution with parameters m = 6000 and p = 0.8, generated by a single call to G05MJF, after initialisation by G05KBF.

9.1 Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
GO5MJF Example Program Text
Mark 20 Release. NAG Copyright 2001.
.. Parameters ..
                  NOUT, N, NR
INTEGER
PARAMETER
                  (NOUT=6,N=20,NR=6007)
.. Local Scalars ..
real
                  Р
INTEGER
                  I, IFAIL, IGEN, M
.. Local Arrays ..
                  R(NR)
                  ISEED(4), X(N)
INTEGER
.. External Subroutines .. EXTERNAL GO5KBF, GO5MJF
EXTERNAL
```

[NP3546/20] G05MJF.3

```
.. Executable Statements ..
     WRITE (NOUT, *) 'G05MJF Example Program Results'
     WRITE (NOUT, *)
     Set the distribution parameters P and M
     P = 0.8e0
     M = 6000
     Initialise the seed to a repeatable sequence
     ISEED(1) = 1762543
     ISEED(2) = 9324783
     ISEED(3) = 42344
     ISEED(4) = 742355
     IGEN identifies the stream.
     IGEN = 1
     CALL GO5KBF(IGEN, ISEED)
     Choose MODE = 2
     IFAIL = 0
     CALL GO5MJF(2,M,P,N,X,IGEN,ISEED,R,NR,IFAIL)
     WRITE (NOUT, 99999) (X(I), I=1, N)
     STOP
99999 FORMAT (1X,I12)
     END
```

9.2 Program Data

None.

9.3 Program Results

```
GO5MJF Example Program Results
        4758
        4851
        4793
        4820
        4851
        4795
        4807
        4792
        4787
        4842
        4801
        4794
        4806
        4878
        4745
        4790
        4832
        4789
        4743
        4812
```

G05MJF.4 (last) [NP3546/20]