G13DKF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

G13DKF accepts a sequence of new observations in a multivariate time series and updates both the forecasts and the standard deviations of the forecast errors. A call to G13DJF must be made prior to calling this routine in order to calculate the elements of a reference vector together with a set of forecasts and their standard errors. On a successful exit from G13DKF the reference vector is updated so that should future series values become available these forecasts may be updated by recalling G13DKF.

2 Specification

```
SUBROUTINE G13DKF(K, LMAX, M, MLAST, Z, IK, REF, LREF, V, PREDZ,

SEFZ, WORK, IFAIL)

INTEGER

K, LMAX, M, MLAST, IK, LREF, IFAIL

real

Z(IK,M), REF(LREF), V(IK,M), PREDZ(IK,LMAX),

SEFZ(IK,LMAX), WORK(K*M)
```

3 Description

Let $Z_t = (z_{1t}, z_{2t}, \dots, z_{kt})^T$, for $t = 1, 2, \dots, n$ denote a k-dimensional time series for which forecasts of $\hat{Z}_{n+1}, \hat{Z}_{n+2}, \dots, \hat{Z}_{n+l_{\max}}$ have been computed using G13DJF. Given m further observations $Z_{n+1}, Z_{n+2}, \dots, Z_{n+m}$, where $m < l_{\max}$, the routine updates the forecasts of $Z_{n+m+1}, Z_{n+m+2}, \dots, Z_{n+l_{\max}}$ and their corresponding standard errors.

The routine uses a multivariate version of the procedure described in Box and Jenkins [1]. The forecasts are updated using the ψ weights, computed in G13DJF. If Z_t^* denotes the transformed value of Z_t and $\hat{Z}_t^*(l)$ denotes the forecast of Z_{t+l}^* from time t with a lead of l (that is the forecast of Z_{t+l}^* given observations Z_t^*, Z_{t-1}^*, \ldots); then

$$\hat{Z}_{t+1}^*(l) = \tau + \psi_l \epsilon_{t+1} + \psi_{l+1} \epsilon_t + \psi_{l+2} \epsilon_{t-1} + \dots$$

and

$$\hat{Z}_{t}^{*}(l+1) = \tau + \psi_{l+1}\epsilon_{t} + \psi_{l+2}\epsilon_{t-1} + \dots$$

where τ is a constant vector of length k involving the differencing parameters and the mean vector μ . By subtraction we obtain

$$\hat{Z}_{t+1}^*(l) = \hat{Z}_t^*(l+1) + \psi_l \epsilon_{t+1}.$$

Estimates of the residuals corresponding to the new observations are also computed as $\epsilon_{n+l} = Z_{n+l}^* - \hat{Z}_n^*(l)$, for l = 1, 2, ..., m. These may be of use in checking that the new observations conform to the previously fitted model.

On a successful exit, the reference array is updated so that G13DKF may be called again should future series values become available, see Section 8.

When a transformation has been used the forecasts and their standard errors are suitably modified to give results in terms of the original series Z_t , see Granger and Newbold [2].

4 References

- [1] Box G E P and Jenkins G M (1976) Time Series Analysis: Forecasting and Control Holden–Day (Revised Edition)
- [2] Granger C W J and Newbold P (1976) Forecasting transformed series J. Roy. Statist. Soc. Ser. B 38 189–203

[NP3390/19/pdf] G13DKF.1

[3] Wei W W S (1990) Time Series Analysis: Univariate and Multivariate Methods Addison-Wesley

5 Parameters

The quantities K, LMAX, IK, REF and LREF output from G13DJF are suitable for input to G13DKF.

1: K — INTEGER Input

On entry: the dimension, k, of the multivariate time series.

Constraint: $K \geq 1$.

2: LMAX — INTEGER Input

On entry: the number, $l_{\rm max}$, of forecasts requested in the call to G13DJF.

Constraint: LMAX ≥ 2 .

 $\mathbf{3}: \quad \mathbf{M} - \mathbf{INTEGER}$

On entry: the number, m, of new observations available since the last call to either G13DJF or G13DKF. The number of new observations since the last call to G13DJF is then M + MLAST.

Constraint: 0 < M < LMAX - MLAST.

4: MLAST — INTEGER

Input/Output

On entry: on the first call to G13DKF, since calling G13DJF, MLAST must be set to 0 to indicate that no new observations have yet been used to update the forecasts; on subsequent calls MLAST must contain the value of MLAST as output on the previous call to G13DKF.

On exit: MLAST is incremented by m to indicate that MLAST + M observations have now been used to update the forecasts since the last call to G13DJF.

MLAST must not be changed between calls to G13DKF, unless a call to G13DJF has been made between the calls in which case MLAST should be reset to 0.

Constraint: $0 \le MLAST < LMAX - M$.

5: $Z(IK,M) - real \operatorname{array}$

Input

On entry: Z(i, j) must contain the value of $z_{i,n+\text{MLAST}+j}$, for i = 1, 2, ..., k; j = 1, 2, ..., m where n is the number of observations in the time series in the last call made to G13DJF.

Constraint: if the transformation defined in TR in G13DJF for the *i*th series is the log transformation, then Z(i, j) > 0.0, and if it is the square-root transformation, then $Z(i, j) \geq 0.0$, for j = 1, 2, ..., m; i = 1, 2, ..., k.

6: IK — INTEGER Input

On entry: the first dimension of the arrays Z, PREDZ and SEFZ as declared in the (sub)program from which G13DKF is called.

Constraint: $IK \geq K$.

7: REF(LREF) — real array

Input/Output

On entry: REF must contain the first $(LMAX - 1) \times K \times K + 2 \times K \times LMAX + K$ elements of the reference vector as returned on a successful exit from G13DJF (or a previous call to G13DKF).

On exit: the elements of REF are updated. The first (LMAX -1) × K × K elements store the ψ weights $\psi_1, \psi_2, \dots, \psi_{l_{\max}-1}$, stored column wise. The next K×LMAX elements contain the forecasts of the transformed series and the next K × LMAX elements contain the variances of the forecasts of the transformed variables; see G13DJF. The last K elements are not updated.

G13DKF.2 [NP3390/19/pdf]

8: LREF — INTEGER

Input

On entry: the dimension of the array REF as declared in the (sub)program from which G13DKF is called.

Constraint: LREF \geq (LMAX – 1) \times K \times K + 2 \times K \times LMAX + K.

9: V(IK,M) - real array

Output

On exit: V(i,j) contains an estimate of the *i*th component of $\epsilon_{n+\text{MLAST}+j}$, for $i=1,2,\ldots,k$; $j=1,2,\ldots,m$.

10: PREDZ(IK,LMAX) - real array

Output

On exit: PREDZ(i, j) contains the updated forecast of $z_{i,n+j}$, for $i=1,2,\ldots,k;$ $j=\text{MLAST}+\text{M}+1,\text{MLAST}+\text{M}+2,\ldots,l_{\max}$.

The columns of PREDZ corresponding to the new observations since the last call to either G13DJF or G13DKF are set equal to the corresponding columns of Z.

11: SEFZ(IK,LMAX) — real array

Output

On exit: SEFZ(i, j) contains an estimate of the standard error of the corresponding element of PREDZ, for i = 1, 2, ..., k; $j = \text{MLAST} + \text{M} + 1, \text{MLAST} + \text{M} + 2, ..., l_{\text{max}}$.

The columns of SEFZ corresponding to the new observations since the last call to either G13DJF or G13DKF are set equal to zero.

12: WORK(K*M) — real array

Workspace

13: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, K < 1,

 $\quad \text{or} \quad \text{LMAX} < 2,$

or $M \leq 0$,

or $MLAST + M \ge LMAX$,

or MLAST < 0,

or IK < K,

or LREF < (LMAX - 1) \times K \times K + 2 \times K \times LMAX + K.

IFAIL = 2

On entry, some of the elements of the reference vector, REF, have been corrupted since the most recent call to G13DJF (or G13DKF).

IFAIL = 3

On entry, one or more of the elements of Z is invalid, for the transformation being used; that is the user may be trying to log or square root a series, some of whose values are negative.

IFAIL = 4

This is an unlikely exit. For one of the series, overflow will occur if the forecasts are updated. The user should check whether the elements of REF have been corrupted.

[NP3390/19/pdf] G13DKF.3

7 Accuracy

The matrix computations are believed to be stable.

8 Further Comments

If a further m^* obervations, $Z_{n+\text{MLAST}+1}, Z_{n+\text{MLAST}+2}, \dots, Z_{n+\text{MLAST}+m^*}$, become available, then forecasts of $Z_{n+\text{MLAST}+m^*+1}, Z_{n+\text{MLAST}+m^*+2}, \dots, Z_{n+l_{\text{max}}}$ may be updated by recalling G13DKF with $M=m^*$. Note that M and the contents of the array Z are the only quantities which need updating; MLAST is updated on exit from the previous call. On a successful exit, V contains estimates of $\epsilon_{n+\text{MLAST}+1}, \epsilon_{n+\text{MLAST}+2}, \dots, \epsilon_{n+\text{MLAST}+m^*}$; columns MLAST + 1, MLAST + 2, ..., MLAST + m^* of PREDZ contain the new observed values $Z_{n+\text{MLAST}+1}, Z_{n+\text{MLAST}+2}, \dots, Z_{n+\text{MLAST}+m^*}$ and columns MLAST + 1, MLAST + 2, ..., MLAST + m^* of SEFZ are set to zero.

9 Example

A program to update the forecasts of two series each of length 48. No transformation has been used and no differencing applied to either of the series. G13DCF is first called to fit an AR(1) model to the series. μ is to be estimated and $\phi_1(2,1)$ constrained to be zero. A call to G13DJF is then made in order to compute forecasts of the next five series values. After one new observation becomes available the four forecasts are updated. A further observation becomes available and the three forecasts are updated.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
G13DKF Example Program Text
Mark 15 Release. NAG Copyright 1991.
.. Parameters ..
                 NIN, NOUT
INTEGER
PARAMETER
                  (NIN=5, NOUT=6)
INTEGER
                 KMAX, IK, IPMAX, IQMAX, NMAX, NPARMX, ICM, LWORK,
                 LIWORK, IDMAXL, LLMAX, LREF
                  (KMAX=3, IK=KMAX, IPMAX=3, IQMAX=3, NMAX=100,
PARAMETER
                 NPARMX=(IPMAX+IQMAX)*KMAX*KMAX+KMAX,ICM=NPARMX,
                 LWORK=2000, LIWORK=100, IDMAXL=2, LLMAX=10,
                 LREF=(LLMAX-1)*KMAX*KMAX+2*KMAX*LLMAX+KMAX)
.. Local Scalars ..
real
                 CGETOL, RLOGL
INTEGER
                  I, IDMAX, IDMIN, IFAIL, IP, IPRINT, IQ, ISHOW, J,
                 K, LMAX, LPAR, M, MAXCAL, MLAST, N, ND, NITER
LOGICAL
                 EXACT, MEANL
CHARACTER
                 MEAN
.. Local Arrays ..
                 CM(ICM, NPARMX), DELTA(IK, IDMAXL), G(NPARMX),
real
                 PAR(NPARMX), PREDZ(IK, LLMAX), QQ(IK, KMAX),
                 REF(LREF), SEFZ(IK, LLMAX), V(IK, NMAX),
                  W(IK, NMAX), WORK(LWORK), Z(IK, NMAX)
                  ID(KMAX), IWORK(LIWORK)
INTEGER
LOGICAL
                 PARHLD(NPARMX)
CHARACTER
                 TR(KMAX)
.. External Subroutines ..
EXTERNAL
                 FPRINT, G13DCF, G13DJF, G13DKF, G13DLF
.. Intrinsic Functions ..
INTRINSIC
                 MAX. MIN
.. Executable Statements ..
```

G13DKF.4 [NP3390/19/pdf]

```
WRITE (NOUT,*) 'G13DKF Example Program Results'
    Skip heading in data file
   READ (NIN,*)
   READ (NIN,*) K, N, IP, IQ, MEAN, LMAX
   MEANL = .FALSE.
   LPAR = (IP+IQ)*K*K
    IF (MEAN.EQ.'M' .OR. MEAN.EQ.'m') THEN
      LPAR = LPAR + K
      MEANL = .TRUE.
   END IF
   IF (K.GT.O .AND. K.LE.KMAX .AND. N.GE.1 .AND. N.LE.NMAX .AND.
       LPAR.GE.1 .AND. LPAR.LE.NPARMX .AND. LMAX.GE.1 .AND. LMAX.LE.
       LLMAX) THEN
      READ (NIN,*) (ID(I), I=1,K)
      IDMAX = O
      IDMIN = O
      DO 20 I = 1, K
          IDMIN = MIN(ID(I),IDMIN)
          IDMAX = MAX(ID(I), IDMAX)
20
      CONTINUE
       IF (IDMIN.GE.O .AND. IDMAX.LE.IDMAXL) THEN
          DO 40 I = 1, K
             READ (NIN,*) (Z(I,J),J=1,N)
40
          CONTINUE
          READ (NIN,*) (TR(I), I=1, K)
          IF (IDMAX.GT.O) THEN
             DO 60 I = 1, K
                READ (NIN,*) (DELTA(I,J),J=1,ID(I))
 60
             CONTINUE
          END IF
          IFAIL = 0
          CALL G13DLF(K,N,Z,IK,TR,ID,DELTA,W,ND,WORK,IFAIL)
          DO 80 I = 1, LPAR
             PAR(I) = 0.0e0
             PARHLD(I) = .FALSE.
80
          CONTINUE
          DO 120 J = 1, K
             DO 100 I = J, K
                QQ(I,J) = 0.0e0
100
             CONTINUE
120
          CONTINUE
          PARHLD(3) = .TRUE.
          EXACT = .TRUE.
          ** Set IPRINT.gt.O for no intermediate monitoring
          IPRINT = -1
          CGETOL = 0.0001e0
          MAXCAL = 40*LPAR*(LPAR+5)
          ** Set ISHOW.eq.0 for no results from G13DCF
          ISHOW = 0
          IFAIL = 1
          CALL G13DCF(K,ND,IP,IQ,MEANL,PAR,LPAR,QQ,IK,W,PARHLD,EXACT,
                      IPRINT, CGETOL, MAXCAL, ISHOW, NITER, RLOGL, V, G, CM,
                      ICM, WORK, LWORK, IWORK, LIWORK, IFAIL)
          IF (IFAIL.EQ.O .OR. IFAIL.GE.4) THEN
```

[NP3390/19/pdf] G13DKF.5

```
IFAIL = 0
              CALL G13DJF(K,N,Z,IK,TR,ID,DELTA,IP,IQ,MEAN,PAR,LPAR,QQ,
                          V,LMAX,PREDZ,SEFZ,REF,LREF,WORK,LWORK,IWORK,
                          LIWORK, IFAIL)
              CALL FPRINT(K,N,LMAX,PREDZ,SEFZ,IK,NOUT)
              M = 1
              MLAST = 0
              Z(1,1) = 8.1e0
              Z(2,1) = 10.2e0
              IFAIL = 0
              CALL G13DKF(K,LMAX,M,MLAST,Z,IK,REF,LREF,V,PREDZ,SEFZ,
                          WORK, IFAIL)
              CALL FPRINT(K,N+MLAST,LMAX,PREDZ,SEFZ,IK,NOUT)
              Leave MLAST unchanged from last call
              Z(1,1) = 8.5e0
              Z(2,1) = 10.0e0
              IFAIL = 0
              CALL G13DKF(K,LMAX,M,MLAST,Z,IK,REF,LREF,V,PREDZ,SEFZ,
                          WORK, IFAIL)
              CALL FPRINT(K,N+MLAST,LMAX,PREDZ,SEFZ,IK,NOUT)
           END IF
        END IF
     END IF
     STOP
99999 FORMAT (1X,A,I2,A)
     END
     SUBROUTINE FPRINT(K,NM,LMAX,PREDZ,SEFZ,IK,NOUT)
      .. Scalar Arguments ..
     INTEGER
                       IK, K, LMAX, NM, NOUT
     .. Array Arguments ..
     real
                       PREDZ(IK,LMAX), SEFZ(IK,LMAX)
     .. Local Scalars ..
     INTEGER
                       I, I2, J, L, L2, L00P
     .. Intrinsic Functions ..
     INTRINSIC
                MIN, MOD
     .. Executable Statements ..
     WRITE (NOUT,*)
     WRITE (NOUT,*) ' FORECAST SUMMARY TABLE'
     WRITE (NOUT,*) ' -----'
     WRITE (NOUT,*)
     WRITE (NOUT,99999) 'Forecast origin is set at t = ', NM
     WRITE (NOUT,*)
     LOOP = LMAX/5
     IF (MOD(LMAX,5).NE.0) LOOP = LOOP + 1
     DO 40 J = 1, LOOP
        I2 = (J-1)*5
        L2 = MIN(I2+5,LMAX)
        WRITE (NOUT,99998) 'Lead Time ', (I,I=I2+1,L2)
        WRITE (NOUT,*)
```

G13DKF.6 [NP3390/19/pdf]

```
I = 1
         WRITE (NOUT, 99997) 'Series', I, ': Forecast',
           (PREDZ(1,L), L=I2+1, L2)
        WRITE (NOUT,99996) ': Standard Error', (SEFZ(1,L),L=I2+1,L2)
        DO 20 I = 2, K
            WRITE (NOUT, 99997) 'Series ', I, ': Forecast
              (PREDZ(I,L),L=I2+1,L2)
            WRITE (NOUT,99996) ': Standard Error',
              (SEFZ(I,L),L=I2+1,L2)
   20
        CONTINUE
        WRITE (NOUT,*)
   40 CONTINUE
     RETURN
99999 FORMAT (1X,A,I4)
99998 FORMAT (1X,A,12X,5I10)
99997 FORMAT (1X,A,I2,A,5F10.2)
99996 FORMAT (10X,A,4(F7.2,3X),F7.2)
     F.ND
```

9.2 Program Data

```
G13DKF Example Program Data
2 48 1 0 'M' 5 : K, N, IP, IQ, MEAN, LMAX
        : ID(I),I=1,K
0 0
-1.490 -1.620 5.200 6.230 6.210 5.860 4.090 3.180
 2.620 1.490 1.170 0.850 -0.350 0.240 2.440 2.580
 2.040 0.400 2.260 3.340 5.090 5.000 4.780 4.110
 3.450 1.650 1.290 4.090 6.320 7.500 3.890 1.580
5.210 5.250 4.930 7.380 5.870 5.810 9.680 9.070
7.290 7.840 7.550 7.320 7.970 7.760 7.000 8.350
7.340 6.350 6.960 8.540 6.620 4.970 4.550 4.810
 4.750 4.760 10.880 10.010 11.620 10.360 6.400 6.240
 7.930 4.040 3.730 5.600 5.350 6.810 8.270 7.680
 6.650 6.080 10.250 9.140 17.750 13.300 9.630 6.800
 4.080 \quad 5.060 \quad 4.940 \quad 6.650 \quad 7.940 \quad 10.760 \quad 11.890 \quad 5.850
 9.010 \quad 7.500 \quad 10.020 \quad 10.380 \quad 8.150 \quad 8.370 \quad 10.730 \quad 12.140 : End of time series
 'N' 'N'
           : TR(1), TR(2)
```

9.3 Program Results

G13DKF Example Program Results

```
FORECAST SUMMARY TABLE

-----

Forecast origin is set at t = 48

Lead Time 1 2

Series 1: Forecast 7.82 7.28
```

: Standard Error 1.72

: Standard Error 2.32

Series 2 : Forecast 10.31

[NP3390/19/pdf] G13DKF.7

2.23

9.25

2.68

4

6.33

8.30

2.68

2.82

5

5.95

2.79

8.10

2.83

3

6.77

8.65

2.78

2.51

FORECAST SUMMARY TABLE					
Forecast origin is set at	t = 49				
Lead Time	1	2	3	4	5
Series 1 : Forecast : Standard Error					
Series 2 : Forecast : Standard Error					
FORECAST SUMMARY TABLE					
Forecast origin is set at	t = 50				
Lead Time	1	2	3	4	5
Series 1 : Forecast : Standard Error					
Series 2 : Forecast : Standard Error	10.20	10.00	9.08	8.54	8.24

G13DKF.8 (last) [NP3390/19/pdf]