
XNICS

Programmer's Guide

Version 1.0

Vladimir Gavryusev

Preprint n.9/2000

CAISMI CNR,

Largo E.Fermi 5, 50125, Firenze (Italia)

September 3, 2000

I

Acknowledgments

The Xnics software package and this manual have been developed by Vladimir

Gavryusev at the Centro per l'Astronomia Infrarossa e lo Studio del Mezzo

Interstellare del CNR and Osservatorio Astro�sico di Arcetri in the close

contact with F. Lisi, C. Ba�a, S. Gennari, E. Oliva, M. Sozzi, E. Giani and

A. Checcucci.

Many implemented features are the result of their suggestions given during

the NICS development.

II

1

Contents

Release notes 4

Version 1.00 . 4

Introduction 5

1 Xnics 7

1.1 General organization . 8

1.2 Interprocess Communication 9

1.3 Initialization and Acquisition Processors 10

1.4 Common Elements of the Widgets 13

1.5 Xnics Resources . 15

1.6 Xnics Startup Arguments . 23

2 Nicsgate 24

2.1 General organization . 24

2.2 Communication with Telescope 25

2.3 Communication with Transnix 26

2.4 Communication with Sensors 27

2.5 Communication with Motor Controller 28

2.6 Hardware Initialization Processor 28

2.7 Telescope Processor . 30

2.8 Sensors Processor . 31

2.9 Motors Processor . 31

2.9.1 Motors Initialization 32

2.9.2 Motors in Debug Mode 34

2.10 Acquisition Processor . 35

2.11 Internal Data Handling . 36

2.12 Internal Image Viewer . 37

2.13 Debug Mode . 39

2.14 Nicsgate Resources . 39

Bibliography 49

2

List of Figures

1.1 Widget with Main menu . 13

1.2 Widget with an Example of the Message 15

2.1 The menu for the Manual Control of the Motors 34

2.2 The Widget with the Acquired Image 38

2.3 The NICSgate Debug Monitor Widget 40

3

Release notes

Version 1.00

This is a description of the programming solutions used in the �rst pro-

duction version of the Xnics, released at 20.07.2000 for the commissioning

stage of the NICS (Near Infrared Camera-Spectrometer) at TNG (Telesco-

pio Nazionale Galileo), La Palma, Spain. The software supports all basic

measurement tasks as well as contains the functionality intended for the in-

struments development and their tuning. The user interface is X11 widget

based interface (created upon ATHENA widget set). The software is cre-

ated as a network distributed software, while basically is executed on the PC

dedicated for the measurements.

The manual contains the basic information necessary for the understand-

ing and, may be, the farther development of the software. The informa-

tion how to use it in the real measurements one can �nd in XNICS. User's

Guide[3]. The other technical details concerning the software and �le sys-

tem organization and procedures of software maintenance are described in

XNICS. Software Maintenance Guide[4].

4

Introduction

This manual describes the general programming solutions implemented in

the software Xnics (X11 nics, which was created for the real time control

of the measurements using the Arcetri two-dimensional infrared instrument

NICS (Near Infrared Camera-Spectrometer) [1,2]

This software is written using C-language and is splitted into two parts |

user interface xnics and hardware dependent processes nicsgate. Both parts

are organized as the standard widget{based X11 client programs and can be

executed under any Unix X11 environment. This choice grants the mobility

of the software.

The interprocess communication uses the standard stream sockets on the

top of TCP/IP protocol. The Xnics is an intrinsically distributed software

and can be executed across the Internet as well as on the stand alone com-

puter, dedicated to the measurements.

The observer starts the user interface, xnics. All other necessary processes

are started by xnics itself. The hardware control process NICSgate always

has to run at the computer, directly connected to the NICS electronics,

while xnics can be in principle executed at any other computer in the local

network or even in the Internet. Currently both processes run at the same

PC dedicated to the NICS control.

This PC is controlled by the Linux operating system.

The compilation process is supported by the standard programming tool

make. All the software can be compiled by a single run of themake. Source

texts for both parts of the software are placed into two corresponding sub-

directories (xnics and nicsgate) of the top source directory (src). The

src directory has a single �le Makefile. The sub-directories contain the

source �les of the corresponding parts of the software. The �les generally

contain the programm material for the support of one certain task or the

small number connected tasks and have indicative names. As usually, there

are some miscellaneous routines which are typically in the �le with the name

xutil.c. Each part of the software can be compiled independently using

make. For the compilation is used free distributed broadly available GNU

gcc compiler. After the compilation both modules, xnics and NICSgate are

moved to the bin directory.

The xnics uses the standard C and X11R6 libraries, including 3D library

5

6 Introduction

of Athena Widget Set. Obviously, the standard version of this library can be

used, in
uencing only a little bit the widgets look.

The nicsgate uses additionally support for �ts �les maintenance, provided

by libfitscio.a [5]. There are available free sources of this library which

can be easily installed at any unix system.

The software development is organized on the top of rcs system, pro-

viding the
exible way to follow the changes in software in multiple versions

environment. This permits to return back if some taken solution is proved

inappropriate. Also it is suitable when the group of programmers is working

on the same project.

The routines contain a lot of comments, the names of the variables are

usually self-explanatory, as far as it is possible to achieve. The text is writ-

ten in a \structured" way, i.e. the blocks of the text are evidenced by the

appropriate indents.

Chapter 1

Xnics

The choice of X11 client as an user interface is an obvious solution in the

measurements controlled by a computer. It is hardware (computer) inde-

pendent,
exible, well supported and covers all programmer's needs. Xlib

and Xtoolkit provide all necessary low-level routines. There are also several

sets of general purpose widgets, most of them commercial. This choice is not

very appropriate for the scienti�c environment and we decided to use the free

Athena Widget Set, creating on its base our own widgets. This widget set is

developed enough to facilitate the programmer's work, is distributed freely

with standard X11 distribution and has some development support from the

independent programmers. For example, there is now available its 3D version

with audio support.

As any X11 client, xnics �rst of all initializes the application resources,

creates the main menu widget, realizes it, starts the hardware controlling

NICSgate process, writes all necessary log messages and leaves the control to

the standard X11 event handler, the routine XtAppMainLoop. This handler

supports all standard X11 client events, coming from a keyboard, screen and

mouse through the Xserver.

The speci�c need of the xnics of the control of other types of events is

supported by the routine XtAppAddInput.

The xnics as well as nicsgate refer to many speci�c �les. All these �les are

the necessary part of the software. To make the software
exible, the certain

�le structure is used which is based on two root directories referenced as

internal variables. All other directories and �les are referenced relatively

these two RootDirectory and HardwareRootDirectory. In a local installation

of the software both variables refer to the same real directory in the �le

structure. These variables are de�ned as the X11 resources (Section 1.5).

7

8 Xnics

1.1 General organization

All variables of the global use are placed into the application header �le

xnics.h. There is the structure, named Wm, with the widgets which need

a special maintenance, additional to the standard of Xt. Then follows the

structure with the instrument and session parameters, the
ags with states of

widgets, the instruments and internal \processors". In this structure are also

included some widget labels, which can be changed through X11 resource

base. This structure, named xnir_res, is used as an application resource

structure, thus xnics.h contains the section with resource name de�nition

and the section XtResource with their initialization.

There are all necessary global variables for the support of the interprocess

communication (using sockets). There are also de�ned some slave variables

and arrays which are used in many routines temporarily or for the transmis-

sion of the information between routines described in di�erent �les.

For the use in a similar way of some callback functions there is a descrip-

tion of a CallbackInput structure. One such a structure, XnirMessage, used

frequently in many places, is de�ned here as a global.

Finally, there are the global variables with display properties, some trans-

lation tables and xnir_context is de�ned as an application context structure

(XtAppContext).

This header �le, xnics.h, as well as the �le xfuncs.h, where the pro-

totypes of all globally used routines are described, are included in all �les,

containing the routines texts.

There are two major tasks of the hardware control (trough the commu-

nication with the nicsgate), which are organized as internal \processors".

Each \processor" is a set of the routines aimed on the solution of a sin-

gle task, maintaining the common internal state, which in combination with

coming events permits to select the appropriate action. These tasks and,

correspondingly, the \processors" are the hardware initialization and the

data acquisition.

The �le xnics.c contains the main program with application initializa-

tion code and the main menu widget code.

The hwinit.c �le contains the code starting the nicsgate, the \processor"

for the communication with nicsgate during hardware initialization and its

control, and the corresponding widget code.

All callback functions, invoked by command buttons from main menu

reside in xfuncs.c �le. They start the major acquisition tasks as well as sub-

menus, etc. There are also the routines controlling the setting of observation

parameters.

The �le hwacq.c contains the routines for the control of the complete-

ness of the observation task parameters, the acquisition \processor", the

corresponding widget code and some internal callback functions.

Interprocess Communication 9

The routines for the support of the acquisition controlled from a job �le

(\automode"), including the Object Pointing/Job Con�rmation widget code

are in the automode.c �le.

The routines to write the session log �les (xnics.log and sensors.log),

together with the routines making and retrieving a snap-shot of the xnics

session state into/from the �le xnics.ini are in the environment.c �le.

The codes of the widgets with Setup-menus are in the setup.c �le.

The �le nir_sock.c contains the code of a ServerSocket routine, which

realizes the socket connection from the server side in the server-client model

of the communication. There are also two routines used from the client side,

one for non-blocked type of connection, another for the blocked type. There

is also the �le nir_sock.h, where the prototypes of the mentioned above

routines are described.

Several miscellaneous routines, for example Message widget, the support

for the List widgets, etc. are in the xutil.c �le.

1.2 Interprocess Communication

The communication between two parts of the software, xnics and NICSgate is

implemented in client-server model, using stream sockets on top of TCP/IP

protocol. Of course, when the software is executed on the same computer,

the internal sockets are used.

In this communication xnics plays , in general, the part of a server, while

NICSgate works as a client.

To create the robust links xnics uses the ServerSocket routine (nir_sock.c)

which �rst of all creates the base socket, de�nes an environment (network

or local), binds the socket and starts the listing on it. Then the NICSs-

gate process is started, provided in the argument line with the port for the

connection, the display to connect and special initial string with necessary

session parameters. The NICSgate immediately uses the ClientSocket routine

to establish the connection. This routine create two \in" sockets, intended

for the receiving of the messages from xnics and one \out" socket to send

the messages. After the setting of the connection environment it asks server

for the connections. The server is waiting the connection requests (up to 6,

for robustness) using the routine select with prede�ned time-outs. If there is

no request the session is aborted with corresponding diagnostic. In a normal

case 3 socket connections are established, the checking initial transmissions

executed and both programs can proceed.

The sockets are used in a di�erent way. There are \in" and \out" sock-

ets to permit asincronius communication in both directions. The message

sent from any side should be acknowledged. If there is no acknowledgment

received in due time, the sending side tries to transmit the pending message

10 Xnics

up to 500 times, when the attempts are stopped and the corresponding di-

agnostic is issued. The acknowledgment could be a simple \ok" or an asked

information.

The messages are the plain ASCII strings, readable immediately, thus

avoiding any control character incidental appearance in the link. Each mes-

sage has a message stamp �eld and the message body separated by at least

one space. The message body could be empty.

The length of the message could be up to 256 bytes, more then enough

for all needs.

Two sockets (\in" and \out") are used for the \routine" communication.

From the NICSgate side the communications can be initiated at any appro-

priate place. The third, \out" for xnics and \in" for NICSgate, is used for a

priority messages from xnics. Among them are the commands starting the

acquisition tasks, the NICSgate Debug Monitor, the requests to show image

or start the image viewer and the STOP/CONTINUE messages. This

permits to break a task in progress even if the \routine" communication is

blocked.

The sockets are controlled for the functionality and in case of the problems

the diagnostic is issued.

The socket events are added to the main loop of the X11 events. The

routines, which read the row messages coming through a socket, retrieve

the message stamp and the body into two strings and transmit them for

consequent elaboration to the top levels of the corresponding processors.

1.3 Initialization and Acquisition Processors

The tasks solved by the \processors" of xnics are relatively simple. They

receive the message and take a corresponding action, usually edit the pa-

rameters in the internal data base, publish the obtained information, send

the necessary response and change the sensitivity of the menu buttons. The

stream of the messages from NICSgate �rst of all comes to the top logic rou-

tine ReadMessageGate (hwinit.c). This routine �lters the messages of a top

level (such as the sensors values, etc.). In the other case the corresponding

processor is activated accordingly to the xnir_res.state
ag.

Below there is a list of all the messages supported currently by the ini-

tialization processor and short description of the corresponding actions.

� ACQ_MES3 : the error message; theMessage widget with it is popped-

up. The message is written into session log �le.

� INITXHW : the messages about the current stage of the initialization

process. They are published in the most frequently renewed label.

Initialization and Acquisition Processors 11

� TELESCOPE,TELESCOPE_OFF,TELESCOPE_ON : the telescope

informative messages. They are published in the corresponding label.

� TNX : the messages about the stage of transnix initialization. They

are published in the corresponding label.

� DSP : the messages about the stage of the transnix DSP sub-system

initialization. They are published in the corresponding label.

� DSPBAR : the messages with the percentage of the execution of the

current sub-task of the transnix initialization. They are shown in the

corresponding scrollbar.

� MOTORenvironment : the request of the current motor environment

settings. The information is send to NICSgate.

� MOTOR : the messages about the stage of the motors initialization.

They are published in the corresponding label.

� MOTOR_ON : the message comes when the motor initialization is �n-

ished.

� MOTORBAR : the messages with the percentage of the execution of

the current sub-task of the motor initialization. They are shown in the

corresponding scrollbar.

� ENDXHW : received when the initialization is �nished. Processor

changes the sensitivity of the command buttons in Hardware Initial-

ization widget and of the buttons in main menu. The corresponding

information is published and the request to the user to enter his/her

name is popped-up.

All the messages supported currently by the acquisition processor follow:

� ACQenvironment : the request of the current observation mode and

session environment settings. The information is send to NICSgate.

� OBSERVER : the request of the observer name. The information is

send to NICSgate.

� MOTORenvironment : the request of the current motor environment

settings. The information is send to NICSgate.

� ASKSOURCE : the request of the source name to use when it is not

available from the telescope data base. The information is send to

NICSgate.

12 Xnics

� SOURCEFILE : the message with the current source name received

from the telescope data base. It is published in the corresponding label

of the main menu.

� MOSAICFILE : the request of the mosaic �le name to use. The infor-

mation is send to NICSgate.

� ACQUISBAR : the messages with the percentage of the execution of

the current sub-task of the data acquisition. They are shown in the

corresponding scrollbar.

� ACQ_MES1 : the message about the current stage of the acquisition

process. They are published in the most frequently renewed label.

� ACQ_MES2 : the messages about the current stage of the acquisition

process and destinated for longer life to permit the user to consult

them. They are published in the less frequently renewed label.

� ACQ_MES3 : the error message; theMessage widget with it is popped-

up. If the session have been in automode, the current job section is

marked as pending. Normally the acquisition task is interrupted. The

message is written into the session log �le.

� MOSAICNUM : the message with the current telescope position ac-

cording the mosaic type of the acquisitions. It is published in the

corresponding label.

� SOURCESKY : the message with the current telescope position ac-

cording Source-Sky type of the acquisitions. It is published in the

corresponding label.

� AIRMASS : the airmass received from the telescope data base. It is

saved in the internal data base.

� FOCUS : the telescope focus value received from the telescope data

base. It is saved in the internal data base.

� MEASNUM : this message is received when a data �le is written. The

current session state snap-shot is saved.

� FILENAME : this message is received when a data �le is written. The

special message is written into the session log �le.

� READY : this message is received when the NICSgate state may be

ambiguous from logical point of view of the xnics.

Common Widget Elements 13

� STOPXACQ : received when the current acquisition task is interrupted

(after the user request or because of any problem. Processor changes

the sensitivity of the command buttons in Acquisition widget and of

the buttons in the main menu. If the session have been in automode,

the current job section is marked as pending. The corresponding infor-

mation is published. The message is written into session log �le.

� ENDXACQ : received when the current acquisition task is completed.

Processor changes the sensitivity of the command buttons in Acquisi-

tion widget and of the buttons in the main menu. The current session

state snap-shot is saved. The corresponding information is published.

1.4 Common Elements of the Widgets

Below we discuss the common elements, appearing in the di�erent widgets

created by xnics. They are generally similar in the organization and the

treatment.

The Fig. 1.1 presents the main menu, created by xncis. It contains many

of these common widgets.

Figure 1.1: Widget with Main menu

The generic window, appearing during the work, can contain several com-

mon elements, such as:

14 Xnics

� Button : The buttons can be of two types. The �rst one invokes the

associated action (starts the jobs, pops-up the sub-menus, etc.). The

button border is highlighted when the pointer is placed on it, to indicate

that the button is ready for the selection. To invoke the corresponding

action, it is enough to click on it the left mouse button. The selected

button changes its color for the short time. The second type of the

buttons usually belongs to a group of several buttons, from which a

single one can be selected. In this case the selected button changes its

color till the other button from the same group is selected. Sometimes

the button can have several \positions", changing its label after each

selection.

� Label Sub-window : This window usually contains short text, explain-

ing the meaning of the other accompanied window. This type of the

window is used also for the display of the regular messages following

the execution of the current task.

� Text Sub-window : The main purpose of this type of the window is

to permit the user to set the desirable value for some job parameters.

There are displayed one or more lines of the text. The window can be

or not be editable by the user. In the �rst case a cursor appears when

the pointer is inside the window. Editable mode lets the user place the

cursor anywhere in the text and modify the text at that position. The

text written by the user is automatically stored by the program when

the user press the Return key or moves the pointer outside the text win-

dow. It is achieved by the use of an appropriate TextFieldTranslation

table. If the cursor doesn't appear when the pointer is inside

the window, it means that this window is not-editable and its

behavior is like a label window. But the parameter value shown in

such a window still can be changed by the choice of the suitable item

from the List window, which in this case can be popped-up using the

nearly placed button List .

� Scrollbar : It is composed of a slider (with vertical or horizontal orien-

tation) with a thumb inside. The scrollbar can be informative and in

this case the thumb inside the scrollbar can not be moved by the user.

Usually it is used to re
ect roughly the performed percent of the task

under the execution. In the other situations the controlled scrollbars

provide the possibility to scan the contents of the accompanied window

in the di�erent directions. To move the thumb down (right) the user

has to click the left mouse button in it. To move the thumb in the

opposite directions the user has to use the right mouse button. The

middle mouse button can be used to move the thumb in both directions

while the button is pressed on it and not released (dragged).

xnics Resources 15

� List Sub-window : This window displays several lines of the text (usu-

ally list of the �les, list of the options, etc.) and one of the items can

be chosen by the click of the left mouse button on it. If the list of

the items do not �t into the window size, the controlled scrollbars are

provided. To close the List-menu one should click on the Dismiss

button. To make a choice and close the List-menu in a single shot one

should make a double click on the List-menu item.

� Compound List Widget : This widget is popped-up by use of the button

List . It contains two buttons, DISMISS and DEFAULT , and the

list sub-window. The list sub-window is used to choose the desirable

item from the list. The DEFAULT button can be used to return

back the default item. The button DISMISS destroys this widget.

� Compound Message Widget : This widget is popped-up by the pro-

gram when the observer should be informed about something what can

in
uence the session. There is, evidently, the text window with the

information and one button, DISMISS , which should be used to de-

stroy this widget. The Fig. 1.2 shows an example of such a message

widget.

Figure 1.2: Widget with an Example of the Message

All the windows, which can appear during the session, are the standard

X11 windows and can be treated using the standard Xserver actions.

But some internal logic can be destroyed in this way sometimes. Anyway, in

the abnormal situation the Xserver actions can sometimes help.

1.5 Xnics Resources

Below are presented all X11 resources of xnics and the structure, where they

are initialized, receiving the default values. In this structure one can see the

correspondence between the resource name and the internal variable name.

16 Xnics

#define XniButtonVertDistance "buttonVertDistance"

#define XnCButtonVertDistance "ButtonVertDistance"

#define XniObserverLabel "observerLabel"

#define XnCObserverLabel "ObserverLabel"

#define XniObserverName "observerName"

#define XnCObserverName "ObserverName"

#define XniIntLabel "integrationLabel"

#define XnCIntLabel "IntegrationLabel"

#define XniIntTimeLabel "integrationTimeLabel"

#define XnCIntTimeLabel "IntegrationTimeLabel"

#define XniIntTimeValue "integrationTimeValue"

#define XnCIntTimeValue "IntegrationTimeValue"

#define XniIntTimeMode "singleTimeMode"

#define XnCIntTimeMode "SingleTimeMode"

#define XniIntTimeUnit "integrationTimeUnit"

#define XnCIntTimeUnit "IntegrationTimeUnit"

#define XniIntNumberLabel "integrationNumberLabel"

#define XnCIntNumberLabel "IntegrationNumberLabel"

#define XniIntNumberValue "integrationNumberValue"

#define XnCIntNumberValue "IntegrationNumberValue"

#define XniIntGroupsLabel "integrationGroupsLabel"

#define XnCIntGroupsLabel "IntegrationGroupsLabel"

#define XniIntGroupsValue "integrationGroupsValue"

#define XnCIntGroupsValue "IntegrationGroupsValue"

#define XniIntTotalTimeLabel "integrationTotalTimeLabel"

#define XnCIntTotalTimeLabel "IntegrationTotalTimeLabel"

#define XniFrameLabel "frameLabel"

#define XnCFrameLabel "FrameLabel"

#define XniFrameName "frameName"

#define XnCFrameName "FrameName"

#define XniMsLabel "mosaicLabel"

#define XnCMsLabel "MosaicLabel"

#define XniMsName "mosaicName"

#define XnCMsName "MosaicName"

#define XniPolarLabel "polarLabel"

#define XnCPolarLabel "PolarLabel"

#define XniPolarInsert "polarInsert"

#define XnCPolarInsert "PolarInsert"

xnics Resources 17

#define XniPolarLinea "polarLinea"

#define XnCPolarLinea "PolarLinea"

#define XniTimerDelay "timerDelay"

#define XnCTimerDelay "TimerDelay"

#define XniDispLabel "displayFileLabel"

#define XnCDispLabel "DisplayFileLabel"

#define XniDispPath "displayPath"

#define XnCDispPath "DisplayPath"

#define XniTelescopeName "telescopeName"

#define XnCTelescopeName "TelescopeName"

#define XniTelescopeAddress "telescopeAddress"

#define XnCTelescopeAddress "TelescopeAddress"

#define XniTelescopePort "telescopePort"

#define XnCTelescopePort "TelescopePort"

#define XniHostsList "hostsList"

#define XnCHostsList "HostsList"

#define XniRootDir "rootDirectory"

#define XnCRootDir "RootDirectory"

#define XniHardHost "hardwareHost"

#define XnCHardHost "HardwareHost"

#define XniHRootDir "hardwareRootDirectory"

#define XnCHRootDir "HardwareRootDirectory"

#define XniiAccount "internalAccount"

#define XnCiAccount "InternalAccount"

#define XniPassword "passwordSoftir"

#define XnCPassword "PasswordSoftir"

#define XniNomotors "noMotors"

#define XnCNomotors "NoMotors"

#define XniNoreset "noReset"

#define XnCNoreset "NoReset"

#define XniHardreset "hardReset"

#define XnCHardreset "HardReset"

#define XniNosensors "noSensors"

#define XnCNosensors "NoSensors"

#define XniBitTeles "bitmapTelescope"

18 Xnics

#define XnCBitTeles "BitmapTelescope"

#define XniBitInstr "bitmapInstrument"

#define XnCBitInstr "BitmapInstrument"

#define XniBitMotor "bitmapMotor"

#define XnCBitMotor "BitmapMotor"

#define XniSockBufsize "socketBufferSize"

#define XnCSockBufsize "SocketBufferSize"

#define XniIniExp "iniexpires"

#define XnCIniExp "Iniexpires"

#define XniFocStep "focusStep"

#define XnCFocStep "FocusStep"

#define XniFocLevel "focusLevel"

#define XnCFocLevel "FocusLevel"

#define XniFocSum "focusSum"

#define XnCFocSum "FocusSum"

#define XniIntBad "badPixelLevel"

#define XnCIntBad "BadPixelLevel"

#define XniIntSat "saturationLevel"

#define XnCIntSat "SaturationLevel"

#define XniSatWarn "saturationWarning"

#define XnCSatWarn "SaturationWarning"

static XtResource xnir_resources[] = {

{

XniButtonVertDistance,XnCButtonVertDistance,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData, button_vert_distance),

XtRImmediate, (XtPointer) 10

},

{

XniObserverLabel,XnCObserverLabel,

XtRString,sizeof(String),XtOffsetOf(XnirAppData, observer_label),

XtRImmediate, "Observer : "

},

{

XniObserverName,XnCObserverName,

XtRString,sizeof(String),XtOffsetOf(XnirAppData, observer_name),

XtRImmediate, "undefined"

},

xnics Resources 19

{

XniIntLabel,XnCIntLabel,

XtRString,sizeof(String),XtOffsetOf(XnirAppData, int_label),

XtRImmediate, "Integration Definitions"

},

{

XniIntTimeLabel,XnCIntTimeLabel,

XtRString,sizeof(String),XtOffsetOf(XnirAppData, int_time_label),

XtRImmediate, "Single measurement time ="

},

{

XniIntTimeValue,XnCIntTimeValue,

XtRFloat,sizeof(float),XtOffsetOf(XnirAppData, int_time_value),

XtRString, "1."

},

{

XniIntTimeUnit,XnCIntTimeUnit,

XtRString,sizeof(String),XtOffsetOf(XnirAppData, int_time_unit),

XtRImmediate, "sec"

},

{

XniIntTimeMode,XnCIntTimeMode,

XtRString,sizeof(String),XtOffsetOf(XnirAppData, singleTimeMode),

XtRImmediate, "SetByHands "

},

{

XniIntNumberLabel,XnCIntNumberLabel,

XtRString,sizeof(String),XtOffsetOf(XnirAppData, int_number_label),

XtRImmediate, "Number of coadds per group ="

},

{

XniIntNumberValue,XnCIntNumberValue,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData, int_number_value),

XtRImmediate, (XtPointer) 5

},

{

XniIntGroupsLabel,XnCIntGroupsLabel,

XtRString,sizeof(String),XtOffsetOf(XnirAppData, int_groups_label),

XtRImmediate, "Number of groups ="

},

{

XniIntGroupsValue,XnCIntGroupsValue,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData, int_groups_value),

20 Xnics

XtRImmediate, (XtPointer) 10

},

{

XniIntTotalTimeLabel,XnCIntTotalTimeLabel,

XtRString,sizeof(String),XtOffsetOf(XnirAppData, int_total_time_label),

XtRImmediate, "Total time ="

},

{

XniTelescopeName,XnCTelescopeName,

XtRString,sizeof(String),XtOffsetOf(XnirAppData, TelescopeName),

XtRImmediate, "TNG"

},

{

XniTelescopeAddress,XnCTelescopeAddress,

XtRString,sizeof(String),XtOffsetOf(XnirAppData, TelescopeAddress),

XtRImmediate, "/dev/ttyS0"

},

{

XniTelescopePort,XnCTelescopePort,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData, TelescopePort),

XtRImmediate, (XtPointer) 1040

},

{

XniFrameLabel,XnCFrameLabel,

XtRString,sizeof(String),XtOffsetOf(XnirAppData, frame_label),

XtRImmediate, "Source : "

},

{

XniMsLabel,XnCMsLabel,

XtRString,sizeof(String),XtOffsetOf(XnirAppData, mosaic_label),

XtRImmediate, "Mosaic : "

},

{

XniMsName,XnCMsName,

XtRString,sizeof(String),XtOffsetOf(XnirAppData, mosaic_name_default),

XtRImmediate, "pt_std3.txt"

},

{

XniTimerDelay,XnCTimerDelay,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData, timer_delay),

XtRImmediate, (XtPointer) 30

},

{

xnics Resources 21

XniRootDir,XnCRootDir,

XtRString,sizeof(String),XtOffsetOf(XnirAppData, root_dir),

XtRImmediate, "/home/nics/nics"

},

{

XniHardHost,XnCHardHost,

XtRString,sizeof(String),XtOffsetOf(XnirAppData, hardware_host),

XtRImmediate, "local"

},

{

XniHRootDir,XnCHRootDir,

XtRString,sizeof(String),XtOffsetOf(XnirAppData, hardwareRoot_dir),

XtRImmediate, "/home/nics/nics"

},

{

XniiAccount,XnCiAccount,

XtRString,sizeof(String),XtOffsetOf(XnirAppData, iaccount),

XtRImmediate, "nics"

},

{

XniNomotors,XnCNomotors,

XtRBoolean,sizeof(Boolean),XtOffsetOf(XnirAppData, nomotors),

XtRImmediate, (XtPointer)False

},

{

XniNosensors,XnCNosensors,

XtRBoolean,sizeof(Boolean),XtOffsetOf(XnirAppData, nosensors),

XtRImmediate, (XtPointer)False

},

{

XniNoreset,XnCNoreset,

XtRBoolean,sizeof(Boolean),XtOffsetOf(XnirAppData, noreset),

XtRImmediate, (XtPointer)False

},

{

XniHardreset,XnCHardreset,

XtRBoolean,sizeof(Boolean),XtOffsetOf(XnirAppData, hardreset),

XtRImmediate, (XtPointer)False

},

{

XniBitTeles,XnCBitTeles,

XtRString,sizeof(String),XtOffsetOf(XnirAppData,bitTelescope),

XtRImmediate, "telescop.bit"

22 Xnics

},

{

XniBitInstr,XnCBitInstr,

XtRString,sizeof(String),XtOffsetOf(XnirAppData,bitInstrument),

XtRImmediate, "instrum.bit"

},

{

XniBitMotor,XnCBitMotor,

XtRString,sizeof(String),XtOffsetOf(XnirAppData,bitMotor),

XtRImmediate, "motor.bit"

},

{

XniSockBufsize,XnCSockBufsize,

XtRInt,sizeof(long),XtOffsetOf(XnirAppData,sock_buffer_size),

XtRImmediate, (XtPointer) 1040

},

{

XniIniExp,XnCIniExp,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData,iniexpired),

XtRImmediate, (XtPointer) 20

},

{

XniFocLevel,XnCFocLevel,

XtRFloat,sizeof(float),XtOffsetOf(XnirAppData, focus_level),

XtRString, ".5"

},

{

XniFocStep,XnCFocStep,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData,focus_step),

XtRImmediate, (XtPointer) 10

},

{

XniFocSum,XnCFocSum,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData,focus_sumNumb),

XtRImmediate, (XtPointer) 4

},

{

XniIntBad,XnCIntBad,

XtRInt,sizeof(long),XtOffsetOf(XnirAppData,int_bad),

XtRImmediate, (XtPointer) 15000

},

{

XniIntSat,XnCIntSat,

xnics arguments 23

XtRInt,sizeof(long),XtOffsetOf(XnirAppData,int_sat),

XtRImmediate, (XtPointer) 12000

},

{

XniSatWarn,XnCSatWarn,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData,sat_warn),

XtRImmediate, (XtPointer) 257

},

};

1.6 Xnics Startup Arguments

To start the program the user has to issue the command

xnics [-[option] -[option] ...]

The most simple way is to omit all the options, using those de�ned by

default or in the resource data base.

Currently there are the following options, relevant to the measurements,

available:

� -har[dreset] to start a session with an unconditional resetting of all

the motors, controlling �lters, grism, etc.

� -nor[eset] to start a session without automatic resetting of all the

motors.

� -nom[otors] to start a session without any control of the motors.

Evidently this option is of a little use for an observer. It is intended

for the abnormal situations.

� -nos[ensors] to start a session without the control of the temperature

and pressure sensors. Has no impact on the measurements. Just the

corresponding information is lost.

Obviously, only one of the options controlling motor behaviour should

be issued. The detailed description of the in
uence of the chosen options

on the measurement session is provided in the corresponding sections of this

manual (2.9.1).

The xnics program is an X11 client and as a such can be provided by the

standard X11 options. One important example is the -display parameter.

If this parameter is provided, all the windows will appear on the referenced

screen, given that all the permissions are provided.

Chapter 2

Nicsgate

The purpose of the nicsgate is to control the instruments. It should be done

in real time, with the minimum delays, especially during the acquisition of

the data. When there is more then a single instrument to control, the mixed

stream of many events of the di�erent origin should be treated simultane-

ously. The X11 has very elaborated tools to support such a situation. Thus

the nicsgate is also organized as X11 client. For the reasons of the e�ec-

tiveness, it also includes some elements of the user interface | namely the

tools for data visualization and analysis and the debug menu, intended for

the support of the instrument development and tuning.

The compiled module of nicsgate, ready for the execution, is named NIC-

Sgate.

After the establishing of the colloquium with xnics, the NICSgate makes

an initialization of its X11 resource data base and the session environment.

All necessary parameters of the session are transmitted in an initial string

from xnics. Then it does not realizes any widgets but simply gives a control

to the XtAppMainLoop, including into the controlled stream of the events the

established socket connections. The only widget created at this stage is a

topLevel widget, supporting an application structure.

2.1 General organization

As in the case of xnics, all variables of the global use are placed into the

application header �le nicsgate.h. Again there is the structure, named Wm,

containing currently a single widget topLevel. The structure, also named

xnir_res, is used as an application resource structure. It contains also the

instrument and session parameters, the
ags with the states of the internal

\processors" dedicated for the control of the instruments . Then follow the

section with resource name de�nitions and the section XtResource with their

initialization.

24

Communication with Telescope 25

Also there are all necessary global variables for the support of the inter-

process communication (using sockets) and for the support of the commu-

nication with instruments. There are also de�ned some slave variables and

arrays which are used in many routines temporarily or for the transmission

of the information between routines described in di�erent �les.

This header �le, nicsgate.h, and the �le nicsfun.h, where the proto-

types of all globally used routines are described, are included in all �les,

containing the routines texts.

The main program with an application initialization code is in the �le

nicsgate.c. It contains also the top logic routine, responsible for the collo-

quium with the xnics.

The �le socket.c contains the low level routines supporting the socket

communication with the xnics.

All low level functions, and the event controlling \processor" for transnix

communication support reside in tnixcom.c �le.

The telescope supporting \processor" routines are in the �le xtelescope.c.

The routines of the motors \processor" are in the �le xmotors.c, the

sensors \processor" | in the �le sensors.c.

The �le fits.c contains all necessary support for data input/output

from/into �ts �les.

The xhwinit.c �le contains the code of the instrument initialization \pro-

cessor" (its top logic and some task dedicated routines).

The routines of the acquisition \processor" reside in the xacquis.c �le.

There are also the elements of the user interface | the tools for data

visualization and analysis and the debug menu, intended for the support of

the instrument development and tuning.

The �le ximage.c contains the routines of the internal data image viewer

and the corresponding widget codes.

The widgets and routines, used to invoke the external auxiliary utilities

and image viewer are in the �le xdisplay.c.

In the �le xmenu.c there are the routines of the debug monitor, used for

the low-level control of some instruments.

Several miscellaneous routines, for example Message widget, the support

for the List widgets, etc. are in the xutil.c �le.

2.2 Communication with Telescope

The nicsgate communicates with a dedicated auxiliary program of TNG soft-

ware through the usual serial port. From the TNG side the port is doubled

thus, in fact providing two serial connections, one for the control of the

telescope movements, and another for the interrogation of TNG data base.

There is a software switch by which the nicsgate controls with which of two

26 Nicsgate

auxiliary programs it is communicating. This working mode is already used

by Xnir software controlling ARNICA instrument.

Any time the writing or the reading is executed on the telescope serial

port, its functionality is checked.

In the case of data base interrogation the communication is handled in a

simple blocked mode | request and waiting of the response.

For the telescope movements at low level the protocol is the same, just,

because the telescope movements take a time, the response is only the con-

�rmation of the command receiving.

The control, that the telescope movement is really �nished, is done by

the interrogation of the current position of the telescope through the TNG

data base.

2.3 Communication with Transnix

The data acquisition by theNICS instrument is controlled by the transputer

based electronics, where should run the transnix program [1,2]. The low-

level protocol of the communication between xnics (in fact, NICSgate) and

transnix is described in [6].

The electronics board is accessible by the software through the special

link. First of all the link status is checked by a program ispy. The response is

analyzed and, if the link is not used by the other program and the transputer

network connected to it is the correct one, the work can proceed.

The transputer electronics has initially only a boot loader, which permits

to boot in it through the link the compiled module of the transnix. This

module is read from a �le in a binary mode and written into the link. The

binary image �le name is referenced by an internal variable and can be set as

a resource, or dynamically, using the Debug menu, if necessary. Its standard

name is transnix.btl. The routine making the initial boot is named boot_TNX

and resides in the �le tnixcom.c, as the most number of other relevant to the

transnix routines. The internal global pointer to the transnix link is named

tnxid.

From this point the normal communication with transnix can be started.

The low-level communication protocol de�nes the structure of the messages

sent/received to/from transnix. To make a connection controllable in any

real situation, the high-level protocol is implemented.

The transnix should acknowledge any received message immediately, while

from the NICSgate side it is not obligatory. The reason is that from the

transnix may come many di�erent informative, warning or error messages

and it is not always capable to receive after each sending. So the acknowl-

edge from the NICSgate side is send only in well de�ned cases, when it is

necessary. The communication \processor" assigns to any message to send

Communication with Sensors 27

to the transnix the pending status. It can have three levels:

1. Send pending. Means the command (message) should be send to the

transnix in the appropriate time.

2. Acknowledgment pending. Means the command is sent but not yet

acknowledged.

3. Execution pending. The command is received and is acknowledged

by the transnix. It should produce some delayed result marked by a

corresponding message from transnix.

The transnix communication processor maintains the status of all the

pending commands. The link basic functionality is controlled by the ioctl

system routine. The special routine WriteToTNX controls all writing ac-

tivity to the transnix link, while the routine ReadFromTNX controls all in-

coming activity from it. Both routines are time-out controlled. There is

implemented the set of the di�erent time-outs for the di�erent situations,

providing thus the robust control on all levels of the command pending.

One of the transputer nodes sends always with a prede�ned repetition

delay a special message, meaning \I'm a live". It permits to control the

transnix functionality even when there is no production activity.

The incoming message is analyzed and in a correspondence with its con-

tents and the pending commands the appropriate action is taken. It could

be an action of the transnix communication processor, or the control can be

passed to the other processor, but always the transnix communication pro-

cessor is leaved in the watching state. Normally it is active only for very

short time, expecting the time-outs.

There is one particular case, when this processor takes a control for rel-

atively long time. It happens when the acquired data frame comes through

the link. It is a huge amount of a data, hence, to minimize the measurement

time and to ensure the integrity of the image, the processor does not leave

control at all till the complete frame is received (the frame consists of many

messages).

2.4 Communication with Sensors

The communication with sensors is executed by transnix communication pro-

cessor in a transparent mode | the command goes through the transnix link

to the serial port of the NICS electronics and vice versa. The messages from

sensors are passed to the sensor processor.

28 Nicsgate

2.5 Communication with Motor Controller

As the telescope, the motor controller is connected directly to the computer

serial port. There are seven motors controlled simultaneously by this con-

troller [7]. The given motor can be addressed by explicit request in the sent

command. All motors together can be addressed also.

The functionality of the motors serial port is checked at all communica-

tions. When the command is send to the motor controller it responds by

echo, which con�rms the command receiving. The protocol of the communi-

cation supports the possible delayed response, when the controller is not able

to report its state immediately (some movements need minutes). In this case

the special event processor is used for the control of this serial port. This

routine is controlled by the time-outs and �nishes its work or with normally

coming response or with expectation time expiring. The time-outs are set to

provide the e�ective functionality of all instruments together and the granted

execution of the requested movement.

Thus, sometimes the motors processor is in a \watching" mode, expecting

the motors controller messages. The most of time it is sleeping, especially

when no activity is permitted on the motors (during the acquisition).

2.6 Hardware Initialization Processor

The execution of the hardware initialization processor is controlled by the pa-

rameter action, provided in a calling statement and by the internal processor

state variables, which re
ect the current environment. The parameter ac-

tion permits to provide this processor with the information about the special

situation which was established by the other processor. The state variables

re
ect the achieved progress in the initialization process.

The action parameter (int) can have the next values:

� 0 : start the initialization process;

� 1 : continue TRANSNIX initialization;

� 2 : continue TELESCOPE initialization;

� 3 : continue MOTORS initialization;

� 4 : continue SENSORS initialization;

� -1 : initialization is stopped by an user, do not proceed, keep tnx_state;

� -2 : continue previously stopped initialization process;

� -3 : break the current initialization part with an error;

Hardware Initialization Processor 29

� -4 : break the current initialization part with an error.

There are several state variables (all of the integer type).

The general processor state variable state can have the next values:

� 0 : the processor is idle, not yet initialized;

� 1 : the initialization is in progress;

� -1 : the processor is idle, the initialization is done;

� -2 : the processor is idle, the initialization failed.

There is also the stop general processor variable which can have the next

values:

� 0 : normal initialization process;

� 1 : the initialization is stopped by the user, do not proceed, keep state;

� -1 : an error during the current part of the initialization.

There is also one state variable for each instrument to be initialized.

The telescope variable tel_state can have the next values:

� 0 : telescope is not yet initialized;

� 1 : the initialization is in progress;

� -1 : the initialization is done successfully;

� -2 : the initialization failed.

The transnix variable tnx_state can have the next values:

� 0 : transnix is not yet initialized;

� 1 : booting the transnix;

� 2 : watch transnix for the �rst message;

� 3 : DSP initialization start/continue;

� 4 : expecting the NICS board identi�er;

� 5 : expecting the LED to be toggled;

� 6-12 : loading the

�

WaveForms number 10-70;

30 Nicsgate

� 13-18 : setting the biases;

� 19 : setting of the CCD area parameters;

� 20 : setting of the CCD box parameters;

� -1 : the initialization is done successfully;

� -2 : the initialization failed.

The motors variable mot_state and the sensor variable sens_state can

have the next values:

� 0 : not yet initialized;

� 1 : the initialization is in progress;

� -1 : the initialization is done successfully;

� -2 : the initialization failed.

When it is necessary to initialize all the instruments from the very begin-

ning, the initialization processor is called with an action value 0. First of all

the telescope processor is called with action=0, then the transnix program is

booted and the transnix initialization is continued in a sequence de�ned by

the tnx_state variable.

Only if the transnix is initialized correctly the motors initialization is

started. It is executed by the motors processor and is described in the Sec-

tion 2.9.

When the motor initialization is �nished, the sensors processor (2.8) is

called. It simply sends to the sensors the contents of the �le sensors.iniseq,

residing in a resource directory. This �nishes the whole process of the

initialization.

2.7 Telescope Processor

The telescope processor is rather simple. It is controlled only by an action

input parameter.

When called with action equal to 0, the telescope processor opens and

controls the telescope serial port.

With action equal to 1, it does the normal processing, depending on the

global
ag xnir_res.acq_state. The telescope processor asks the necessary

information from the telescope data base, and, if necessary, moves the tele-

scope to the next position according the mosaic acquisition de�nitions. This

de�nitions are taken from the mosaic �le, which name is provided by xnics.

The rules to which this �le should con�rm are described in [3].

Sensors Processor 31

When the mosaic acquisition is �nished or interrupted by the user, the

additional movement of the telescope is executed | it is moved to the origin,

the position before the acquisition was started.

To break the mosaic execution the telescope processor should be called

with action=-1.

2.8 Sensors Processor

This processor is also very simple. It is invoked during the initialization, if

the option -nosensors was not used at the start-up of the xnics. The sen-

sors processor uses for the communication with NICS sensors the transnix

communication processor, because the sensors are connected to the serial

port of the NICS electronics. The contents of the �le sensors.iniseq is

sent during the initialization and the processor continues its work. With a

prede�ned delay it is awaked and sends the series of the sensors interroga-

tion commands. When the response comes it is transmitted to the xnics

and placed into internal data base. Xnics also writes the received informa-

tion into the sensors.log �le. If there is no response after a prede�ned

time-out, the corresponding sensor interrogation is disabled. Normally the

sensors processor asks the pressure, the temperature from LS330 sensor and

3 temperatures from LS208 sensor.

2.9 Motors Processor

The motors processor is in some sense the most complicated processor of this

software. The reason is that there are seven motors to control, and several of

them have very peculiar behaviour. The timings of all the motors are di�er-

ent. Some motors | number 1 (camera), 4 (�lter), 5 (grism), 6 (aperture)

| control the wheels, thus permitting the movements in both directions.

The motors 2 (array), 3 (lyot) and 7 (aperture sector paddle) control slides,

thus their movements are limited from both ends. While most of the mo-

tors have well de�ned home positions and can be resetted simply enough,

just there should be chosen correct direction, velocity and acceleration of the

movements, the 7th motor needs very special treatment due to the technical

reasons. The motors positioning should be �nished always approaching from

the same side, because the motor controller can loose the counts.

There is also necessity turn on the current of the motors for the move-

ments, and turn it o� during the acquisition, because it have been proved

that the motors under current produce additional, not negligible noise in

CCD detector.

Finally, this processor should be active only when the motors positioning

is executed.

32 Nicsgate

The motors processor provides three types of the services | the com-

plete initialization of the motors, their positioning to re
ect the settings for

the current acquisition task and the free positioning of any motor for the

development and tuning purpose.

As far as the normal (for the current acquisition) positioning of the motors

is the last part of the initialization we do not describe it separately.

As all other processors the actions of this one depend on the input param-

eter action and on the maintained internal state. There is also additional

input parameter (string), the command to execute when asked in debug

mode.

The following actions are permitted:

� 0 : the initialization;

� 1 : the regular processing controlled by the state values;

� 2 : the processing with indirect call when the response from the motor

controller comes and support for the debug mode.

The internal state of the motors processor is much more complicated than

in the case of the others.

There is a variable of the processing state (int), which can have the

values from 0 to 8. The chosen action depends not only on this variable

value but also on the values of the motors state variables, stored in an array

mot_state, one for each motor. We will describe the state values setting

below.

NICSgate also maintains the positions of all motors in two global arrays

xnir_res.MotPreviousPosition and xnir_res.MotPosition.

2.9.1 Motors Initialization

The complete initialization of the motors consists in their resetting (move

to the home position, where the position values are set to zero) and their

positioning into the situation saved in xnics.ini �le.

Because the motor controller maintains their positions (if everything is

ok), xnics implements as a normal behaviour so called \soft reset".

First of all, all the motors are interrogated for their positions.

If the presumed position of the motor and the responded value are the

same we accept it and do not reset. Otherwise, or if there is no saved in-

formation about motors position, the motor is forced to move to the home.

The position is checked again and, if it is correct, the motor moves to the

position de�ned by observation mode setting.

If xnics is started with option -noreset, the reported positions are taken

as valid without any comparison.

Motors Initialization 33

The opposite happens when xnics is started with option -hardreset. In

this case all the motors are forced to the home position.

If xnics is started with option -nomotors, the motors processor does not

execute any control of the motors, just skipping any action on them.

The NICSgate obtains the starting option from xnics in the initial string

and establishes the corresponding global
ags.

At the beginning of the initialization the motors processor is called with

the action value 0 and the command parameter equal to \0". It asks the xnics

about the current environment setting, possibly restored from xnics.ini,

sets for all controlled motors mot_state to 0 and for all motors excluded

from the control to -1. Then it reads from the �le motors.iniseq residing

in the directory resource all commands for the initial setting. Then the

commands are executed (sent to motor controller) one by one. The state

is equal to 0. When all the initial commands are sent, the state is changed

to 1 and the AskPosition sub-processor is activated. This sub-processor in-

terrogates all the motors for the current position. The mot_state of the

corresponding motor is changed to 1. The requests are sent to all the mo-

tors simultaneously. When the answers come, the motors processor in called

with the action value 2. The SendReset sub-processor is activated. This

sub-processor compare the returned and expected positions for each motor

and activates the reset procedure in accordance with the global
ags set. If

the xnir_res.hardreset is set to 1, the reset is done for all motors in any

situation. If the xnir_res.noreset is set to 1, the reset is not done for all

motors in any situation, the reported position is accepted as valid and set as

a current position into xnir_res.MotPosition. In a normal processing the

reset is done only for those motors, for which the reported position does not

correspond to the expected one. When all resets are issued, the SendReset

sub-processor reports \nojob", the state is changed to 5 and the AskPosition

sub-processor is activated again. We skip the reported positions at this point,

they are asked only to ensure that the reset movements are �nished. Now we

interrogate the indexer status by the AskIndexerStatus sub-processor with

state set to 6. The responses are controlled by CheckIndexerStatus routine,

if all is correct, we force the motor controller to set the current positions

to 0. The xnir_res.hardreset
ag, if set, is turned out (to 0). We do

the hard reset only once. The state is changed to 4 and the AskPosition

sub-processor is activated again. When all position checking is executed, the

state is changed to 2, the xnir_res.noreset
ag, if set, is turned out (to

0), permitting the soft reset in the farther work.

The �rst stage of the initialization is �nished. The positions of the motors

are known. Then, we can proceed with the current observation mode settings.

This work is normally done by the motors processor in the beginning of all

the acquisition tasks. The information is asked again from xnics. If there is

some job to do, i.e. the asked positions for some motors are di�erent from

34 Nicsgate

the previous ones, the state is set to 3 and the SetPosition sub-processor

is activated. It sends the corresponding requests to all in
uenced motors

and then send the command to execute the requests. The state is set to 4,

thus activating again the pair of AskPosition/CheckPosition sub-processors.

When all the controls are executed and all is in the correct situation the

current of the motors is turned o� and the motors processor becomes inactive.

The idle value for the state variable is 8.

2.9.2 Motors in Debug Mode

For the development of the instrument and the tuning of its functionalities

it is necessary to have the possibility to move any motor to any possible

position and, probably, to make the data acquisition in this non-standard

environment. For this purpose the motors processor provides the possibility

to set any position of the chosen motor, make its reset in positive and negative

directions. Also any valid motor controller command can be send to it by

the direct de�nition. The menu supporting the manual control is accessible

trough the NICSgate Debug Monitor (Fig. 2.3) using the button Set Motors

and is shown in the Fig. 2.1.

Figure 2.1: The menu for the Manual Control of the Motors

Obviously, the standard working mode, when the motors can be moved

only to a certain well de�ned set of the positions should be temporarily

disabled when the manual control of the motors is executed. All the sub-

processors have slightly changed behaviour to permit the manual control.

The motors processor pops-up the message widget with results of the com-

mand execution and with received response of the motor controller, when it

was interrogated. The motors processor tries to maintain always the correct

internal state of the motors, including their positions. Because of this the

certain level of the attention is needed. While the user can think that he/she

has issued a single command, when the issued command changes the mo-

tor position, the additional command, asking the resulting position is send

by the motors processor. The execution time could be long (even minutes),

thus the user can send another and another command. This can create some

break in the internal protocol, because only �nite (and small) number of

Acquisition Processor 35

such, practically incorrect, commands can be supported e�ectively. It is not

fatal, but may be misleading.

2.10 Acquisition Processor

The acquisition processor executes all acquisition tasks asked by the user. It

is controlled by an action parameter, and by three state variables | stop,

state and the global
ag xnir_res.acq_state.

The parameter action can have the next values:

� 0 : start the acquisition procedure;

� 1 : continue the acquisition procedure;

� -1 : stop the acquisition procedure;

� -2 : break the acquisition procedure.

The variable stop is necessary because the acquisition process should be

stopped not at any moment but at certain appropriate moments. Thus the

asked action is not immediate but delayed. When stop=0 the acquisition

process proceeds normally. When it is set to 1 it stops the task execution at

nearest suitable moment.

The variable state follows the stages of the task execution and can have

the next values:

� 0 : idle;

� 1 : motors processing to be �nished;

� 2 : send command \set sampling" to transnix;

� 3 : send command \set data return" to transnix;

� 4 : telescope processing to be �nished;

� 5 : clean memory;

� 6 : send the command to acquire one frame;

� 7 : the frame data are received;

� 8 : send command \set data idle" to transnix.

The direct in
uence on the acquisition processor work has also the global

variable xnir_res.acq_state, which de�nes the type of the current acqui-

sition task. It can have the next relevant values:

36 Nicsgate

� 3 : mosaic;

� 4 : several groups;

� 5 : single group;

� 6 : free run;

� 8 : single frame;

� 9 : source-sky special mosaic.

Called with action=0, the acquisition processor gets all necessary in-

formation concerning the task de�nition, sets all relevant internal variables,

clears the arrays for the data storage and activates the motors processor,

which completes its part of the preparation.

When the observation mode environment is ready, two commands are sent

to the transnix | set the needed sampling mode and to activate the sending

of the data frame after its completion.

Then the telescope processor executes all necessary movements and re-

ceives the relevant information from the telescope. In fact, at the beginning

there is no real movement, because initially the object should be pointed

by the telescope operator. The movements are executed only in mosaic type

acquisition, starting usually from the second mosaic position. But it depends

on the information found in the corresponding mosaic �le.

The telescope processor returns \READY" after completion of its part of

work and the command for the acquisition of an image is sent to the transnix.

When the data frame is received from transnix, the measurements are

continued until the group is �nished. The resulting averaged image is saved

into the �ts �le.

Then the acquisition processor makes the next group at the same tele-

scope position, if asked. After that it changes the telescope position, acti-

vating again the telescope processor and so on, until the telescope processor

returns \MOSAICFINISHED".

At this point the current acquisition task is �nished. The processor sends

to the transnix the command \do not transmit data to me" and passes the

\idle" state to the transnix processor.

During all this stages from many di�erent points to xnics may be send

the informative or even error messages. In the case of an error the acquisition

processor breaks its task at the achieved stage.

2.11 Internal Data Handling

The scheme of the data handling in nicsgate is rather simple. There are two

2D arrays of the preset in resources dimensions, one long integer map_s and

Internal Image Viewer 37

another short integer map.

All internal manipulations are done in map_s thus preserving an accuracy

of the image. The image resulting from the averaging through the group of

the measurements is placed into map and then is written into the output �ts

�le.

In a special case of source{sky measurements this type of data handling

permits to have immediately in the memory the subtracted image.

The acquired data reside in a memory until the new acquisition task is

started. It permits to analyze the image by an internal image viewer so long

as the observer likes.

When the acquisition task creates multiple frames, the image control can

be done by an external viewer.

2.12 Internal Image Viewer

The widget with internal viewer (Fig. 2.2) is described in [3]. Here we give

some details how it is organized in a program.

Both arrays, where the data are stored, can be shown in the Image widget.

The choice depends on the value of the global variable xnir_res.image_source.

When it is set to 0 (default), the map array, i.e. the production image is vi-

sualized. If this variable is set to 1, the current average of stored till the

current moment image in map_s is visualized. This variable can be set in the

resource data base.

When the image widget is popped-up, the properties of the display are

checked, and, if the model supports the pseudo-color colormaps, the possi-

bility to change them is provided. The number of the color indexes is set to

128. If the display does not support the dynamic change of the colormap, the

number of the color indexes is de�ned in a correspondence with the image

depth used by the Xserver.

The chosen interval of the intensity from the data array is mapped into

the color indexes accordingly to the chosen procedure. By default it is linear

mapping, while the square and square root mappings can be used too.

The image array (1024x1024 pixels) is very large to view it in an original

size even on a relatively large, 17" displays. So we use the view-port widget

to demonstrate an image. The default size of the view-port is 256x256 pix-

els. The scrollbars are provided to scroll the complete image. There is no

problem to change the current view-port size by the standard X11 facilities

dynamically.

The x,y coordinates of the shown image are chosen to correspond to the

data presentation by the SAOimage tool. The image seen by this internal

viewer and by the SAOimage are placed on the screen in the same manner.

Part of the image, the square centered at the point marked by the left

38 Nicsgate

Figure 2.2: The Widget with the Acquired Image

mouse button click (or de�ned through the resources), is shown in \zoomed"

mode. There is 128x128 zoomed image window. Thus the single pixel in the

original image can be presented as the 2x2, 4x4 and 8x8 square of the same

color in the zoomed image leaving it still representative. Correspondingly the

original area reduces in the chain 64x64, 32x32, 16x16 pixels. The original

area is shown in the core image by the rectangle.

We calculate the mean \sky" intensity averaging the means over several

10x10 areas far away from the source position (which is usually near the array

center). The intensity interval mapping into the color indexes is \centered"

Debug Mode 39

at this value. It means that when the minimum and maximum limits of the

intensity interval to be mapped (they can be tuned independently one from

the other), the �rst one can be not larger than a sky value, and the second

one can not be lower than it. Thus a minimum 1 intensity interval near

this value is granted for the visualization. The sky can be suppressed by the

setting of the thumb of the minimum intensity scrollbar to its maximum (the

most right position), and the \source" can be suppressed by the setting of

the thumb of the maximum intensity scrollbar to its minimum (the most left

position).

Choosing the scrollbars positions the user can evidence those features of

the image he/she likes.

2.13 Debug Mode

To provide the instrument developers by the means to investigate the di�cult

situations and to tune the di�erent parameters of the instrument, there is a

special debug mode of the nicsgate.

Internally it is marked by the global variable DEBUGMENU set to 1,

when this mode is in e�ect. The debug mode is activated when the NICSgate

Debug Monitor (2.3) is started.

The user can boot into the NICS electronics the chosen binary image of

the program, reset link to the electronics in case of the problems with its

driver, interrogate or change the di�erent internal parts of the transputer

network, load the desirable waveform, set the di�erent parameters of the

transnix, change the behaviour of the xnics and NICSgate and control the

motors using the sub-menu (Fig. 2.1).

More details on these options are written in [4].

2.14 Nicsgate Resources

Here we present all X11 resources of the NICSgate and the structure, where

they are initialized, receiving the default values. In this structure one can

see the correspondence between the resource name and the internal variable

name. Some of these resources are the same as those of the xnics, other are

unique for the NICSgate.

#define XniButtonVertDistance "buttonVertDistance"

#define XnCButtonVertDistance "ButtonVertDistance"

#define XniSi "singleIntegration"

#define XnCSi "SingleIntegration"

40 Nicsgate

Figure 2.3: The NICSgate Debug Monitor Widget

#define XniCMap "colorMap"

#define XnCCMap "ColorMap"

#define XniMotAdr "motorsAddress"

Nicsgate Resources 41

#define XnCMotAdr "MotorsAddress"

#define XniImageDim "imageViewSize"

#define XnCImageDim "ImageViewSize"

#define XniImageMin "imageMin"

#define XnCImageMin "ImageMin"

#define XniImageMax "imageMax"

#define XnCImageMax "ImageMax"

#define XniImageSource "imageSource"

#define XnCImageSource "ImageSource"

#define XniImageTransf "imageTransf"

#define XnCImageTransf "ImageTransf"

#define XniSourceX "sourceX"

#define XnCSourceX "SourceX"

#define XniSourceY "sourceY"

#define XnCSourceY "SourceY"

#define XniFocStep "focusStep"

#define XnCFocStep "FocusStep"

#define XniFocLevel "focusLevel"

#define XnCFocLevel "FocusLevel"

#define XniFocSum "focusSum"

#define XnCFocSum "FocusSum"

#define XniPixelarcs "pixel2arcsf"

#define XnCPixelarcs "Pixel2arcsf"

#define XniPixelarcl "pixel2arclf"

#define XnCPixelarcl "Pixel2arclf"

#define XniIntBad "badPixelLevel"

#define XnCIntBad "BadPixelLevel"

#define XniIntSat "saturationLevel"

#define XnCIntSat "SaturationLevel"

#define XniSatWarn "saturationWarning"

#define XnCSatWarn "SaturationWarning"

#define XniScanTime "scanTime"

#define XnCScanTime "ScanTime"

#define XniTelTimeOut "telTimeOut"

#define XnCTelTimeOut "TelTimeOut"

#define XniTelDelay "telDelay"

42 Nicsgate

#define XnCTelDelay "TelDelay"

#define XniTimerDelay "tnxDelay"

#define XnCTimerDelay "TnxDelay"

#define XniTimeOutW "timeOutW"

#define XnCTimeOutW "TimeOutW"

#define XniTimeOutR "timeOutR"

#define XnCTimeOutR "TimeOutR"

#define XniTimeOutA "timeOutA"

#define XnCTimeOutA "TimeOutA"

#define XniTimeOutE "timeOutE"

#define XnCTimeOutE "TimeOutE"

#define XniRootDir "rootDirectory"

#define XnCRootDir "RootDirectory"

#define XniBootFile "bootFile"

#define XnCBootFile "BootFile"

#define XniBiasQ1 "biasQ1"

#define XnCBiasQ1 "BiasQ1"

#define XniBiasQ2 "biasQ2"

#define XnCBiasQ2 "BiasQ2"

#define XniBiasQ3 "biasQ3"

#define XnCBiasQ3 "BiasQ3"

#define XniBiasQ4 "biasQ4"

#define XnCBiasQ4 "BiasQ4"

#define XniPolTen1 "polTension1"

#define XnCPolTen1 "PolTension1"

#define XniPolTen2 "polTension2"

#define XnCPolTen2 "PolTension2"

#define XniAreaX "areaSizeX"

#define XnCAreaX "AreaSizeX"

#define XniAreaY "areaSizeY"

#define XnCAreaY "AreaSizeY"

#define XniBoxX0 "boxSizeX0"

#define XnCBoxX0 "BoxSizeX0"

#define XniBoxY0 "boxSizeY0"

Nicsgate Resources 43

#define XnCBoxY0 "BoxSizeY0"

#define XniBoxX "boxSizeX"

#define XnCBoxX "BoxSizeX"

#define XniBoxY "boxSizeY"

#define XnCBoxY "BoxSizeY"

#define XniNresets "nresets"

#define XnCNresets "Nresets"

#define XniNcampions "ncampions"

#define XnCNcampions "Ncampions"

static XtResource xnir_resources[] = {

{

XniButtonVertDistance,XnCButtonVertDistance,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData, button_vert_distance),

XtRImmediate, (XtPointer) 10

},

{

XniTimerDelay,XnCTimerDelay,

XtRInt,sizeof(unsigned long),XtOffsetOf(XnirAppData, tnx_delay),

XtRImmediate, (XtPointer) 200

},

{

XniTimeOutW,XnCTimeOutW,

XtRInt,sizeof(unsigned long),XtOffsetOf(XnirAppData, tnx_timeoutw),

XtRImmediate, (XtPointer) 2000

},

{

XniTimeOutR,XnCTimeOutR,

XtRInt,sizeof(unsigned long),XtOffsetOf(XnirAppData, tnx_timeoutr),

XtRImmediate, (XtPointer) 5000

},

{

XniTimeOutA,XnCTimeOutA,

XtRInt,sizeof(unsigned long),XtOffsetOf(XnirAppData, tnx_timeouta),

XtRImmediate, (XtPointer) 2000

},

{

XniTelTimeOut,XnCTelTimeOut,

XtRInt,sizeof(unsigned int),XtOffsetOf(XnirAppData, tel_timeout),

XtRImmediate, (XtPointer) 20

},

44 Nicsgate

{

XniTelDelay,XnCTelDelay,

XtRInt,sizeof(unsigned int),XtOffsetOf(XnirAppData, tel_delay),

XtRImmediate, (XtPointer) 1

},

{

XniScanTime,XnCScanTime,

XtRInt,sizeof(unsigned long),XtOffsetOf(XnirAppData, scan_time),

XtRImmediate, (XtPointer) 928

},

{

XniCMap,XnCCMap,

XtRString,sizeof(String),XtOffsetOf(XnirAppData, cmap),

XtRImmediate, "gray scale"

},

{

XniMotAdr,XnCMotAdr,

XtRString,sizeof(String),XtOffsetOf(XnirAppData, MotorsAddress),

XtRImmediate, "/dev/ttyS1"

},

{

XniImageDim,XnCImageDim,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData, image_dim),

XtRImmediate, (XtPointer) 256

},

{

XniImageMin,XnCImageMin,

XtRFloat,sizeof(float),XtOffsetOf(XnirAppData, imbar_min),

XtRString, ".5"

},

{

XniImageMax,XnCImageMax,

XtRFloat,sizeof(float),XtOffsetOf(XnirAppData, imbar_max),

XtRString, ".5"

},

{

XniPixelarcl,XnCPixelarcl,

XtRFloat,sizeof(float),XtOffsetOf(XnirAppData, pixelarclf),

XtRString, ".25"

},

{

XniPixelarcs,XnCPixelarcs,

XtRFloat,sizeof(float),XtOffsetOf(XnirAppData, pixelarcsf),

Nicsgate Resources 45

XtRString, ".13"

},

{

XniFocLevel,XnCFocLevel,

XtRFloat,sizeof(float),XtOffsetOf(XnirAppData, focus_level),

XtRString, ".5"

},

{

XniFocStep,XnCFocStep,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData, focus_step),

XtRImmediate, (XtPointer) 10

},

{

XniFocSum,XnCFocSum,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData, focus_sumNumb),

XtRImmediate, (XtPointer) 4

},

{

XniImageSource,XnCImageSource,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData, image_source),

XtRImmediate, (XtPointer) 0

},

{

XniSi,XnCSi,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData, singleframe),

XtRImmediate, (XtPointer) 1

},

{

XniSourceX,XnCSourceX,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData, source_x),

XtRImmediate, (XtPointer) 480

},

{

XniSourceY,XnCSourceY,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData, source_y),

XtRImmediate, (XtPointer) 540

},

{

XniImageTransf,XnCImageTransf,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData, image_transf),

XtRImmediate, (XtPointer) 0

},

{

46 Nicsgate

XniIntBad,XnCIntBad,

XtRInt,sizeof(long),XtOffsetOf(XnirAppData, int_bad),

XtRImmediate, (XtPointer) 15000

},

{

XniIntSat,XnCIntSat,

XtRInt,sizeof(long),XtOffsetOf(XnirAppData, int_sat),

XtRImmediate, (XtPointer) 12000

},

{

XniSatWarn,XnCSatWarn,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData, sat_warn),

XtRImmediate, (XtPointer) 257

},

{

XniRootDir,XnCRootDir,

XtRString,sizeof(String),XtOffsetOf(XnirAppData, root_dir),

XtRImmediate, "/home/nics/nics"

},

{

XniBootFile,XnCBootFile,

XtRString,sizeof(String),XtOffsetOf(XnirAppData, tnx_boot),

XtRImmediate, "/home/nics/nics/bin/transnix.btl"

},

{

XniBoxX0,XnCBoxX0,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData, box_sizex0),

XtRImmediate, (XtPointer) 0

},

{

XniBoxX,XnCBoxX,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData, box_sizex),

XtRImmediate, (XtPointer) 512

},

{

XniBoxY0,XnCBoxY0,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData, box_sizey0),

XtRImmediate, (XtPointer) 0

},

{

XniBoxY,XnCBoxY,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData, box_sizey),

XtRImmediate, (XtPointer) 512

Nicsgate Resources 47

},

{

XniAreaX,XnCAreaX,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData, area_sizex),

XtRImmediate, (XtPointer) 512

},

{

XniAreaY,XnCAreaY,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData, area_sizey),

XtRImmediate, (XtPointer) 512

},

{

XniBiasQ1,XnCBiasQ1,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData, bias_q1),

XtRImmediate, (XtPointer) 3590

},

{

XniBiasQ2,XnCBiasQ2,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData, bias_q2),

XtRImmediate, (XtPointer) 4095

},

{

XniBiasQ3,XnCBiasQ3,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData, bias_q3),

XtRImmediate, (XtPointer) 2850

},

{

XniBiasQ4,XnCBiasQ4,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData, bias_q4),

XtRImmediate, (XtPointer) 1665

},

{

XniPolTen1,XnCPolTen1,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData, pol_tension1),

XtRImmediate, (XtPointer) 3500

},

{

XniPolTen2,XnCPolTen2,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData, pol_tension2),

XtRImmediate, (XtPointer) 2050

},

{

XniNresets,XnCNresets,

48 Nicsgate

XtRInt,sizeof(int),XtOffsetOf(XnirAppData, nresets),

XtRImmediate, (XtPointer) 32

},

{

XniNcampions,XnCNcampions,

XtRInt,sizeof(int),XtOffsetOf(XnirAppData, ncampions),

XtRImmediate, (XtPointer) 2

},

};

Bibliography

[1] Lisi, F., Ba�a, C., Gennari, S., Oliva, E., 1999, \Nics, the near IR

imager/spectrograph of the TNG", International Meeting on Astronomical

Technologies, S.Agata, Memorie della Societ�a Astronomica Italiana, in

press.

[2] Comoretto, G., Ba�a, C., Gavryusev, V., Lisi, F., Sozzi, M., 1999, \The

Data Acquisition System for Nics | Hardware Solutions", International

Meeting on Astronomical Technologies, S.Agata, Memorie della Societ�a

Astronomica Italiana, in press.

[3] Gavryusev, V., 2000, \XNICS. User's Guide", Arcetri Astrophysical

Preprint, n.8/2000.

[4] Gavryusev, V., 2000, \XNICS. Software Maintenance Guide", Arcetri

Astrophysical Preprint, n.10/2000.

[5] Pence W.D., 1997, \CFITSIO User's Guide. An Interface to FITS Format

Files for C Programmesrs", version 1.2, HEASARC, code 662, Goddard

Space Flight Center, Greenbelt, MD 20771, USA

[6] Ba�a, C., 2000, \Il Protocollo Transnix-Xnics", Arcetri Technical Report,

n.2/2000.

[7] OEM Series Software Reference Guide, 1993, Compumotor Division of

Parker Hanni�n Corporation, p/n 88-013785-01 A.

49

