
SKA Project Memo

Mapping SKA ICDs to

Tango Control System

2015 August 5
C.Baffa, E.Giani

Abstract

Following the SKA TM-LMC Trieste workshop decision to use Tango Control System
as the standard framework for Monitoring and Control, we decided to explore some of
the details of a possible implementation of SKA ICDs in terms of Tango structures.

We strongly hope this to be a first step toward a common set of Tango device driver
classes shared with as much SKA software as possible. In this project memo we will
speak about the TM - Element-LMC interface, yet most of this structure can be used at a
lower level.

Arcetri Technical Report 3/2015

1

1 Introduction

This document has been planned following the agreement, at the SKA TM-LMC Trieste workshop, to
use Tango Control System as the standard framework for Monitoring and Control. We decided to
explore a possible implementation of SKA ICDs in terms of Tango structures.

1.1 Assumptions and Guidelines

The information used to compile this document comes from part of the SKA documentation i and
Tango manualsii.
The first document collects the main guidelines and requirements for the TM-LMCs interactions. We
would like to the use most of the protocol and classes described in lower level interaction as well, such
as in the Element – Sub-elements and Sub-element – Components interactions.

1.2 Extension to lower level interfaces.

Most structures and ideas of the TM-Element communication can be extended to the lower level
interactions. As an example, we would like to cite the Status and Mode attributes, where an inheritance
matrix between state attributes and portions of SKA, reports as follows in Table 1 (adapted from a
Tim#4 presentation by S.V.iii).

2

Table 1: Compatibility matrix between state attributes and portions of SKA

Indicator Acc. Element Sub-
element

Component Sub-array
Capability

Type r/o
r/w

REAL, SIMULATED,
NOT-FITTED (?)

same same -

Control Mode r/w TM, LOCAL same same -

Operational
Mode (Admin.
Assigned)

r/w ENABLED, DISABLED,
MAINTENANCE, TEST,
SAFE

same same -

Operational
State

r/o INITIALIZING, READY,
ERROR, OFF, OFF-DUTY,
SHUTTING-DOWN,
UNKNOWN

same same -

Health Status r/o OK, DEGRADED, FAILED same same same

Usage Status r/o IDLE, USED same same same

Redundancy r/o ACTIVE, STANDBY same same -

2 Naming conventions
In a project of the size of SKA it is imperative to have clear cut naming conventions. An effort in this
direction is under wayiv. Here we will give only an example of a possible schema.

2.1 Tango naming Schema

The device is the heart of the TANGO device server model. A device is an abstract concept, it can be a
piece of hardware, a collection of hardware a logical device, or a combination of all these. Each device
has a unique name in the control system (and eventually one alias). Within Tango, a four field name
space has been adopted consisting of:

[host:port/]domain/family/member

In this hierarchical notation, the member specifies which element within a family. The family specifies
which kind of equipment within a domain. The domain groups devices related to which part of the full
system they belongs to. The host corresponds to a Tango domain, but can be accessed remotely, also
from devices belonging to other domains.

Tango name identify a specific hardware, so it makes sense to group together similar devices belonging
to different device portions, however, for management reasons, also the opposite choice can be taken.
This naming flexibility should be exploited by a wise whole-SKA nomenclature schema to simplify the
overall management.

To access specific propriety the syntax is:

[host:port/]domain/family/member->property

2.2 A possible SKA nomenclature mapping

A possible mapping to SKA nomenclature can be:

Element:port/Sub-Element/Component/Instance

In a similar way, we can refer to an attribute or a property with the notations:

Element:port/Sub-Element/Component/Instance/attribute

Element:port/Sub-Element/Component/Instance/attribute->property

This nomenclature assume to have a Tango database server for each Element. For larger elements this
can be suboptimal, and a partition can be devised.

Some examples can be:

csp:8081/pss/computing_node_pipeline/node_0739

low_dishes:8085/dishes/azimuth_motor/motor_001

csp:8081/low_beam_former/fpga_board_control/board_0354_chip_3

3

2.3 A second possible SKA nomenclature mapping

As the simple nomenclature devised in the previous section can be sub-optimal, we can consider an
alternate mapping. In this approach we can extensively apply the Tango Alias functionality.

The basic idea is to use the Tango names in a very hardware-related way.

1. Domain is mapped to the kind of physical device: blade_server, beam_forming_FPGA,
main_motors, pumps, etc.

2. Family is mapped to to the specific component: pss_node, k206_temperature_sensor,
t800_power_switch, mid_filter_board, etc.

3. Instance is mapped to the specific item: rev_A_board_25, pt100_sensor_1023, fan_23.

To these physical hardware description we can associate, at least for larger objects a human
comprehensible alias: capetown_dish_34, room_34_temperature_sensor, mid_channelizer_board_81,
PST_engine, etc.

2.4 SKA Components and Capabilities

As SKA is a very large and complex instrument, it has been divided into components and capabilities
as an aid to comprehension. the structure has been described in many global documents, whereas here
will only note the SKA peculiar use of the term Capability.

In the SKA environment, 'capability' refers to any ‘logical grouping’ (functionality/product) provided
by an Element to sub-divide or configure the output of that Element. Each of these logical groupings
are referred to as a “capability” for which the LMC of each Element will select and allocate resources
to form the capability from its available components and report health-status on that capability to the
TM. TM will coordinate the allocation of Capabilities for an Experiment and Element LMC will report
Capabilities to the TM

2.5 Aliases

Within Tango, each device or attribute can have an alias name. An alias is simply an open string stored
in the database and it can be used every time a device or an attribute name is requested by the API’s.
The rationale of the alias is to give device or attribute name a name more natural from the physicist
point of view.

In a previous section (Error: Reference source not found) we have described a possible use of this
capability to implement a SKA specific, human-readable, nomenclature schema.

4

3 Status Variables and properties

In SKA environment there are some variables which define the global status of each Element. The main
internal variable is the Operating State which has a direct mapping to the Tango State attribute.

The full list of SKA status variable is:

• Control Mode;

• Operating Mode;

• Operating State;

• Health Status;

• Usage Status;

• Capability Health Status ;

• Sub-array State (Applicable for sub-arrays only).

In this chapter we will propose a schema for the implementation of SKA status as Tango attributes.

3.1 Operating State (SKA) versus State (Tango) attributes.

In Tango, there are two variables which refer to the logical state of the device (State) and a string
description of the current state value (Status). In SKA the corresponding value has the name of
Operating State.

SKA Operating State has seven possible values, while Tango state has 14 possible values (see Table 2).
We have mapped the SKA values to the nearest Tango ones. As Tango Status variable is a free-form
string, it will always contain the SKA State name.

5

SKA Tango

OFF This is a Powered off state. OFF

READY: This suggests that the Element is ready to operate ON

SHUTTING-DOWN
GOING-OFF-DUTY:

This is a transient state in which the Element is
shutting down or going Off-Duty.

MOVING

ERROR: An Element reports an ‘Error’ state when it detects
a problem that affects its ability to accept certain
commands or execute certain processes/operations.

FAULT

OFF-DUTY: Special non-operational state in which Entity has
been placed to reduce power consumption.

STANDBY

UNKNOWN: TM is not aware of actual state of Element. UNKNOWN

INITIALIZING: This is a transient state in which the Element exists
when it is starting up its processes.

INIT

Table 2: Proposed correspondence between SKA Operating State and Tango State.

The ambiguity in the Moving status can be resolved with an auxiliary status variable, Moving-Status.

3.2 Status and Mode variables

In the SKA framework, beside the Operating State, there are 5 others main variables which describe
the basic properties of an Element (and, lower level entities). We propose to implement them as Tango
attributes of enum type. Table 3 shows the SKA-Tango mapping.

6

SKA Tango name

Element Type Real a Real Element is connected

Simulated a simulator is connected in place of a real Element.

Standby a Element/Simulator is connected and is used as a backup
device for providing redundancy

Not-Fitted the Element/sub-element is not fitted.

Element_Type

Control Mode Central Element is under TM control.

Local The element is under manual/local control of the LMC.

Control_Mode

Operating Mode
(alternative to
Administrative
Mode)

Enabled The Element is allowed to perform activities.

Disabled The Element is intentionally excluded from performing
activities or participating in an operation

Maintenance The Element is reserved for maintenance activities like
diagnostics, configuration changes, commissioning

Test The Element is reserved for setup / testing activities.

Safe This mode imposes functional restrictions that increase
resilience to equipment damage

Operating_Mode

Health Status Normal Element is in normal working condition

Degraded Element is functioning in degraded condition when subset
of its functionality is compromised or unavailable.

Failed Implies when there is major failure that prevents Element to
perform its function.

NotOperable Element is not available for observations due to missing
dependencies.

Health_Status

Usage Status Idle Element is not in use but it is available for use.

Active Element is performing in observations, but it still
has operating capacity to provide for more observations.

Busy (?) Element is performing in one or more observations and
cannot participate in any other observations

Usage_Status

Table 3: Synopsis of proposed mapping of SKA Status and Mode variable to Tango Attributes.

To that status parameter a recent memov adds the variables of Table 4.

To fully specify SKA status we propose to add the TANGO-only status variables defined in Table 6.

Extending the Status variable paradigm to entities smaller than Elements, we need to take into account
a slight different meaning of status variable. For instance not all are meaningful (see, for instance,
Table 1) or all have the same Read/Write status on attribute (see Table 5).

7

SKA Tango name

Administrative Mode
(alternative to
operating Mode)

Enabled Element can be administered

Disabled (Default) Normal Operations

Maintenance Element under maintenance

Not-Fitted the Element/sub-element is not fitted.

Administrative_Mode

Simulated Mode Real The element is a real hardware

Local The element is simulated

Simulated_Mode

Observing Mode Idle The element is idle.

Imaging The element is observing images

PSS The element is performing PSS

PST The element is performing PST

VLBI Performing VLBI observations

Transient search The element performs transient search

Observing_Mode

Test Mode Normal Element is in normal working condition

Test Element is under test

Test_Mode

Redundancy State Active Redundancy is enabled

Standby Element is in standby

Redundancy_State

Table 4: Proposed status variable, added to Table 3 ones.

3.3 Programmed parameters

Each Element (and sub-elements, etc.) has its own operating set of parameters defined in the various
ICD documents. Such parameters define unequivocally the working status and the operations
performed by the Element. They come from TM on the basis of the observation to be performed.

The Operating parameters are defined to have many different formats. Those formats can be mapped to
the corresponding parameter type provided by Tango-Control, as specified in Table 7.

Each parameter can be defined as a Scalar, Vector or 2-dimension Array, in Tango notation:
Tango::SCALAR , Tango::SPECTRUM , Tango::IMAGE. For attribute of the Tango::IMAGE data
format, all the data are also returned in a one dimension array. The first array is value[0],[0], array
element X is value[0],[X-1], array element X+1 is value[1][0] and so forth.

8

Mode / State + values Element Sub-
element

LRU SW/HW
components

Sub-array Capabilities

Administrative Mode R/W R/W R/W R/W - -

Observing Mode - - - - R/W R/O

Control Mode R/W R/W R/W R/W - -

Simulated Mode R/W R/W R/W R/W - -

Test Mode R/W R/W R/W R/W - -

Operational State R/O R/O R/O R/O - -

Health State R/O R/O R/O R/O R/O R/O

Usage State R/O R/O R/O R/O R/O R/O

Redundancy State R/O R/O R/O R/O - -

Table 5: Read-Write mode of SKA status variables.

SKA Variable to be
fully specified

Tango Auxiliary Variables

STATE MOVING-STATUS Going-Off-Duty Element is going Off-Duty

Shutting-Down Element is shutting down

Getting-Ready Element is going Ready

Not-Applicable (Default) Normal Operations

LOGGING-LEVEL VERBOSITY Normal Normal logging level

Debug Debug verbosity level

Trace Trace all verbosity level

All All information logged

Table 6: Tango auxiliary variables to fully specify SKA variables

9

Tango available types

Tango::DevBoolean Boolean

Tango::DevShort Mapped to short signed integer

Tango::DevLong Mapped to long signed integer (4 bytes)

Tango::DevLong64 Mapped to int64 signed integer

Tango::DevFloat Mapped to single float

Tango::DevDouble Mapped to double precision float

Tango::DevUChar Mapped to unsigned char

Tango::DevUShort Mapped to short unsigned integer

Tango::DevULong Mapped to long signed integer (4 bytes)

Tango::DevULong64 Mapped to int64 signed integer

Tango::DevString Mapped to character string

Tango::DevState Tango specific structure

Tango::DevEncoded Structure: format plus character string

Table 7: Tango available parameter types

3.4 Monitoring points

Monitor points are parameters (attributes) that aremonitored periodically .
Each SKA element and sub-element autonomously monitors and reports on the status of its Monitor
Points; i.e. each sub-element monitors the parameters identified as Monitored Points, then it generates
Reports according to pre-configured parameters (frequency and/or thresholds) and finally it sends the
Monitor Point Reports to the pre-configured destination address. Each component has its own unique
list of Monitor Points, defined in the various ICDs.

In the Tango Framework there are local quantities (Attributes) whose values can be read by the upper
control level, (in Tango nomenclature 'client' of the device server). A periodic reading time can be
specified for these quantities, as well as a condition on the value which will rise an alarm condition
(see chapter 5).

As the Tango Attributes can have all the value types of parameters (scalar and arrays of types in Table
7), it is highly unlikely that a monitor point value will not fit in one of those types.

10

4 Commands
In the default setting, the SKA ICDs describe mainly changes of modes, states and
parameters/attributes interrogations. Other forms of direct command aren’t mandatory, while each
implementation has a degree of freedom to implement what is necessary.

Command name Input data type Output data type

State void Tango::DevState

Status void Tango::DevString

Init void void

DevRestart Tango::DevString void

RestartServer void void

QueryClass void Tango::DevVarStringArray

QueryDevice void Tango::DevVarStringArray

Kill void void

QueryWizardClassProperty Tango::DevString Tango::DevVarStringArray

QueryWizardDevProperty Tango::DevString Tango::DevVarStringArray

QuerySubDevice void Tango::DevVarStringArray

StartPolling void void

StopPolling void void

AddObjPolling Tango::DevVarLongStringArray void

RemObjPolling Tango::DevVarStringArray void

UpdObjPollingPeriod Tango::DevVarLongStringArray void

PolledDevice void Tango::DevVarStringArray

DevPollStatus Tango::DevString Tango::DevVarStringArray

LockDevice Tango::DevVarLongStringArray void

UnLockDevice Tango::DevVarLongStringArray Tango::DevLong

ReLockDevices Tango::DevVarStringArray void

DevLockStatus Tango::DevString Tango::DevVarLongStringArray

EventSubscribeChange Tango::DevVarStringArray Tango::DevLong

ZmqEventSubscriptionChange Tango::DevVarStringArray Tango::DevVarLongStringArray

AddLoggingTarget Tango::DevVarStringArray void

RemoveLoggingTarget Tango::DevVarStringArray void

GetLoggingTarget Tango::DevString Tango::DevVarStringArray

GetLoggingLevel Tango::DevVarStringArray Tango::DevVarLongStringArray

SetLoggingLevel Tango::DevVarLongStringArray void

StopLogging void void

StartLogging void void

Table 8: Automatically provided Tango commands.

11

Tango automatically provides a basic set of commands (see Table 8). These are the implementation of a
set/query of parameters/attributes and basic device controls, as start/stop polling quantities,
subscribe/unsubscribe change notification and logging management.

4.1 Timed set command

We consider important to add a timed set command to the list of default commands. As it is available a
time server with a precision of at least tens of milliseconds, we propose that each group of set
commands will be registered at once, but programmed only at the wall time contained in the timed set
command argument. This command is useful mainly in the top levels of the control hierarchy, but it
might come handy at deeper levels as well. In our view, this command will ease the coordination of the
various portion of SKA.

12

5 Alarms and Logging
Alarm management is critical for the performance and maintenance of any complex system, such as the
SKA components. An important portion of LMC role is the correct handling of error conditions.

5.1 Alarms in SKA

Alarm can be defined as an undesirable event - for which the urgency of the matter is such that it
requires urgent intervention: either a manual (by the operator) or an automated- action to end the
condition or to reduce the effect of the condition.

SKA defines two main types of alarms:

• Transient (for instance a software exception) if the system returns at once to its normal status

• Persistent (for instance an hardware failure) if an action has to be taken.

Alarms can further be categorized into five categories:

1. Communication Alarm Type - An alarm of this type is principally associated with the
procedures and/or processes required to convey information from one point to another.

2. Quality of Service Alarm Type - An alarm of this type is principally associated with degradation
of quality of service.

3. Processing Error Alarm Type -An Alarm of this type is principally associated with software or

4. processing fault.

5. Equipment Alarm Type - An alarm of this type is principally associated with an equipment fault.

13

5.2 Alarms in Tango

The Tango Control system provides a service inside the Device Server class to rise an alarm condition
if a monitored variable is outside a programmed interval or the server code explicitly detects such a
condition. Tango does not posses a general Alarm engine in its core implementation, so more complex
alarm conditions cannot be handled in the core system.

However a fairly general Alarm handler class has been made available by one of the members of the
Tango community (Elettravi).

Each instance of this class receives alarm signals from up to 30 groups of device servers and, according
to one or more logical expressions, programmed at run time and stored in a database, can rise one or
more alarm condition (see Illustration 1). Henceforth we will use the term 'alarm' as a shorthand for
'alarm condition'.

Alarm Device Server attribute

The Tango Alarm Device Server external interface implements the alarm attribute as an array of strings.

The current implementation of an alarm string is composed by some fields separated by '\t' (tab)

14

Illustration 1: Structure of Tango Alarm Collector Class.

character, the fields are the following:

• time_stamp (seconds since 1/1/1970) of the instant when this alarm changed status

• micro seconds of the instant when this alarm changed status alarm name

• status (“NORMAL” or “ALARM”)

• acknowledge (“ACK” or “NACK”)

• count: if the status is “ALARM” the count field contains the number of subsequent events all
evaluating the “ALARM” status, otherwise it is 0

• severity level (“fault”,“warning” or “log”)

• group(s) (if more than one, groups are separated by the '|' character)

• message (optional)

• new status: if it is the first time this alarm is read in the “ALARM” status, it is added the string
“NEW” as the last field

Table 9 shows the required Alarm level for SKA. Up to now the Tango Alarm level is limited to three
levels (LOG, WARNING, FAULT), but the extension to more levels should be not too difficult. As an
alternative, we can define an attribute (Fault_Level, enum type) which can identify the fault severity.

A possible correspondence can be devised in Table 10, while the use of Fault_Level variable is
detailed in the Table 11.

Severity Level Description

Indeterminate Alarm level used when the severity of the error condition is unknown.

Critical This severity level indicates that a condition affecting service has occurred and
immediate corrective action is required.

Major This severity level indicates that a condition affecting service has occurred and
urgent corrective action is required.

Minor This severity level indicates that a condition has occurred that does not directly
affect service, however corrective action should be taken in order to prevent a more
serious fault.

Warning Alarm level used to indicate alarm warning conditions. The warning severity level
indicates the detection of a potential or impending fault that may affect service,
before any significant effects have been encountered.

INFO Information to report progress and other events of Interest.

Table 9: Required Alarm level for SKA

15

SKA Tango

Indeterminate No information. NONE No correspondence

Critical The device has failed. There is no
workaround.

Fault: An error occurred. The process signals its
grade in Fault_level
Fault_level = Critical

Major An error has occurred. A function or
operation did not complete successfully. A
workaround may be possible.

Fault_level = Major

Minor A condition was detected which may lead
to functional degradation but the device is
still fully functional.

Fault_level = Minor

Warning detection of a potential or impending fault
that may affect service

WARN: An unexpected event occurred but it could
be recovered locally

INFO This level of logging should give
information about work-flow at a coarse-
grained level. Information at this level may
be considered useful for tracking process
flow.

INFO: Provides information on actions performed

Table 10: A possible correspondence between SKA and Tango Alarm level. To fully specify Fault level
we propose the use of an auxiliary variable (Fault_Level).

SKA reference Tango Auxiliary Variables for Alarm

ALARM-LEVEL FAULT_LEVEL None Element is in normal working condition

Critical Element has a critical Alarm

Major Element has a major Alarm

Minor Element has a minor Alarm

Table 11: Tango auxiliary variables to fully specify SKA alarm

Along with the alarm notification SKA requires the following informations:

• Alarm Name
• Source of Alarm (name of element LMC and sub element/component)
• Severity Level
• Time-stamp
• Cause of Alarm
• Parameters etc.

Comparing with the Tango alarm attribute, we can build the following mapping table:

16

SKA Fields Tango Fields

Time-stamp time_stamp (second + microseconds)

-- status (“NORMAL” or “ALARM”)

-- acknowledge status

-- count

Severity Level severity level

Alarm Name alarm name

Source of Alarm

free form message. To be carefully specified.Cause of Alarm

Parameters etc.

-- new status
SKA alarm fields mapping to Tango Alarm fields

The Tango free form message should have a clear formatting to let an easy extraction of sub-fields. A
possible format can be “source-of-alarm ; cause-of-alarm ; parameter0 , parameter1 , … “.

We insert explicitly the source-of-alarm field for clarity and ease of operation, but this information can
be, in principle, also obtained from the alarm name.

Alarm Device Server Commands

The Tango Alarm Device Server provides the next commands:

• ack: acknowledge alarms present in the alarm table. Alarms in status NORMAL/ACK are
removed from the alarm table

• configured: read an array of configured alarms. This command accepts an argument used to
filter the list on the alarm name. If the argument is 0, all the configured alarms are returned. The
returned string is composed by some fields separated by the '\t' character. The fields are:

• time-stamp of the instant when this alarm was added;

• alarm name;

• alarm formula (evaluated to handle the alarm condition);

• time threshold (period of time during which the formula has to evaluate true and after
which the alarm changes status to ALARM);

• severity level;

• group(s);

• message;

• actions (two Tango command separated by a `;` character);

17

• load: load a new alarm;

• remove: remove an alarm from the configuration. This command accepts as argument the alarm
name;

LMC Guidelines document states that each SKA Element shall make provision for TM to:

• suppress a specific alarm

• clear specific alarm or all alarms for a particular Element/sub-element/component

• obtain the list of active alarms (for Element/sub-element/component)

The Tango Alarm Server commands can partially fulfil these functions and in the following table we
propose a possible match.

SKA Fields Tango Fields

Suppress Configuring the time threshold its possible to
suppress an alarm for a time.

Clear ack alarm. Can we do this on a group base?

List of active alarms Configured

Moreover, the Alarm Device Server provides commands to configure, add and delete alarms.

5.3 Advanced alarm handling technique

Alarm shelving

Alarm shelving is a mechanism used to temporarily suppress malfunctioning alarms in a controlled
manner.

The Tango Alarm System can implement such features using the time threshold of the alarm but it
seems to lack:

• a specific state for this alarm condition (for example SUPPRESSED)

• the mechanism to list the suppressed alarms which can also be used, as a reminder, to report
periodically to LMC/TM the list of the suppressed alarms

• auto-re-enabling (requested ?)

Nuisance alarms

Nuisance alarms are alarms that annunciate excessively, unnecessarily, or do not return to the normal
state after the correct response is taken (e.g., chattering, fleeting, or stale alarms) . The cause of such
alarms are often wrong setting of the limits.

The common mitigation strategy for reduction is using dead-band in conjunction with time delay. The
dead-band for an attribute is defined at the level of the Device Server (not alarm system), configuring

18

appropriately the minimum and maximum levels for warning and alarm properties of the specific
device attribute.

State-base alarms and alarm flood

Alarm floods generally arise during a change of the operating state (such as start-up, shut-down,
initialization etc.).

The alarm formula associated to each configured alarm can be written to conform to the proper settings
for each state.

5.4 Alarm reduction

Since Tango alarm system can be nested, we propose to introduce at Element/Sub-Element level a layer
of such Device Server, in order to implement a censoring/prioritization policies. The exact rules, stored
in a database, can be managed remotely, for instance by TM, as needed, also during the operation
phase.

5.5 Alarm logging

The presence of a free format alarm description field in Tango alarm system give the possibility to
include in the Alarm log a registration of all SKA required informations (see Table 12).

The Tango Alarm system can be easily extended to include a local static log of events/log in a round
robin database, such as the RRDTOOLSvii. We strongly suggest the collection of such statistical
information as a strategy to improve the system reliability also after the instrument initial deployment.

5.6 Logging level

At LMC level there should be the possibility to assign a logging level to log message to filter the
verbosity of the logs. SKA defines 8 logging levels while Tango only 6. We propose to add a Parameter
(Verbosity) which can differentiate between the last three levels (Debug, Trace and All). The proposed
structure can be seen in Table 12.

19

SKA Tango

OFF No information. Devices should never log
messages on OFF logging level.

OFF: Nothing is logged

FATAL The device has failed. There is no workaround.
Recovery is not possible

FATAL: A fatal error occurred. The process is about
to abort

ERROR An error has occurred. A function or operation
did not complete successfully. A workaround
may be possible. The device can continue,
potentially with degraded functionality

ERROR: An (unrecoverable) error occurred but the
process is still alive

WARN A condition was detected which may lead to
functional degradation but the device is still
fully functional. Logging information at this
level should not directly impact the
performance of the device

WARN: An error occurred but could be recovered
locally

INFO This level of logging should give information
about workflow at a coarse-grained level.
Information at this level may be considered
useful for tracking process flow.

INFO: Provides information on important actions
performed

DEBUG Verbose output used for detailed analysis and
debugging of a device. Logging information at
this level may impact performance of the
device.

DEBUG: Generates detailed information describing
the internal behaviour of a device
Verbosity = Debug

Verbosity = Trace

Verbosity = All

TRACE Extremely verbose output for detailed analysis
and debugging of a device. This level of
logging should show function call stacks and
provide a high level of debug

ALL is the lowest possible logging level and is
intended to turn on all logging

Table 12: Mapping of SKA logging level with Tango logging level and Verbosity variable.

20

6 Access protection
Tango Control provides a controlled access system (ACL Module). It is a simple controlled access
system which does not provide encrypted communication or sophisticated authentication. It simply
defines which user (based on computer logging authentication) is allowed to run which command (or
write attribute) on which device and from which host. The information used to configure this controlled
access feature are stored in the Tango database and it can be accessed by a specific Tango device server.

In our opinion this simple protection schema is sufficient to limit the access to specific areas of SKA to
specific operators. Such authorizations can be managed remotely, for instance by TM, as needed. To
access remote installation specifically crafted VPN can be devised, maintaining the same protection
level of local devices.

21

7 Conclusions

In this project memo we have outlined a possible implementation of most of SKA requirements in
Tango-Control.

We see a lot of potential in having a common set of Tango device driver classes shared with the SKA
software, for this having positive implication at TM – Element – LMC level as well as lower level. This
is why we would like to start new discussion which aims to the development of a set of uniform tools
and approaches in all SKA environment.

Updates on this topic will be carefully noted in future versions of this memo.

22

Table of Contents
Abstract..1
1 Introduction...2

1.1Assumptions and Guidelines..2
1.2Extension to lower level interfaces..2

2 Naming conventions...3
2.1Tango naming Schema...3
2.2A possible SKA nomenclature mapping...3
2.3A second possible SKA nomenclature mapping...4
2.4SKA Components and Capabilities..4
2.5Aliases..4

3 Status Variables and properties...5
3.1Operating State (SKA) versus State (Tango) attributes..5
3.2Status and Mode variables..6
3.3Programmed parameters...8
3.4Monitoring points...10

4 Commands...11
4.1Timed set command...12

5 Alarms and Logging..13
5.1Alarms in SKA...13
5.2Alarms in Tango...14

Alarm Device Server attribute..14
Alarm Device Server Commands...17

5.3Advanced alarm handling technique..18
Alarm shelving..18
Nuisance alarms..18
State-base alarms and alarm flood..19

5.4Alarm reduction..19
5.5Alarm logging...19
5.6Logging level..19

6 Access protection..21
7 Conclusions...22

23

i “LMC Interface Guidelines Document”, S.R. Chaudhuri et all, Revision R, 2015-03-17, SKA document SKA-TEL-
TM-0000031

ii “The TANGO Control System Manual”, The TANGO Team, Revision 8.1, June 27, 2013,
iii “SKA CSP Local Monitor and Control” S. Vrcic, SKA CSP TIM#4, Cape Town, SA, 15 April, 2015
iv “Proposed SKA Global Nomenclature”, S. Vrcic, 2015, in preparation.
v “SKA CSP Modes and States”, S. Vrcic, SKA CSP Memo 0015, 2015-05-12
vi “Development of the TANGO Alarm System”, L.Pivetta, ICALEPCS 2005
vii “The RRD Tools” http://oss.oetiker.ch/rrdtool/

	Abstract
	1 Introduction
	1.1 Assumptions and Guidelines
	1.2 Extension to lower level interfaces.

	2 Naming conventions
	2.1 Tango naming Schema
	2.2 A possible SKA nomenclature mapping
	2.3 A second possible SKA nomenclature mapping
	2.4 SKA Components and Capabilities
	2.5 Aliases

	3 Status Variables and properties
	3.1 Operating State (SKA) versus State (Tango) attributes.
	3.2 Status and Mode variables
	3.3 Programmed parameters
	3.4 Monitoring points

	4 Commands
	4.1 Timed set command

	5 Alarms and Logging
	5.1 Alarms in SKA
	5.2 Alarms in Tango
	Alarm Device Server attribute
	Alarm Device Server Commands

	5.3 Advanced alarm handling technique
	Alarm shelving
	Nuisance alarms
	State-base alarms and alarm flood

	5.4 Alarm reduction
	5.5 Alarm logging
	5.6 Logging level

	6 Access protection
	7 Conclusions

