
Arcetri Technical Report
SKA Project Series

Commands and Setting for CSP
C.Baffa, E.Giani M.Vela Nuñez

Abstract

During the normal set-up and programming of the many elements and sub-element of SKA it arises
the necessity to program many parameter and to execute different commands. During the
development of CSP.LMC prototype we designed a flexible schema to implement such functionality
inside the TANGO Control paradigm used in SKA Control and Monitor. We sketch here our
implementation proposal and analyse few use cases.

Arcetri Technical Report 2/2016 - 28 June 2016

1 Structure

The CSP.LMC prototype we developed, in its overall structure, follow as closely as possible the
physical structure of CSP, adding some abstract-related classes as the Capability ones. Its logical
components are illustrated in Figure 1.

Apart from the overall structure, the CSP.LMC prototype is composed by a number of specialized
classes which share a common basic structure. In particular they all share the SKA CSP Guidelines
status/state variable (see Appendix 1 : Mapping between SKA State and Mode and Tango state)
implementing only the relevant ones. These classes belongs to few families:

1. Master classes, which manage a physical component and report its status and telemetry

2. Capability classes, which manage a logical component and report its status

3. LMC classes, which handles the command and monitoring of local LMC hardware

4. Alarm classes which manage alarms, up to complex behaviour as grouping, masking and
censoring

Figure 1: Logical structure of CSP.LMC prototype

2 Proposed Set/Command bundle
Our proposal for the set-up of a SKA component is based on a container approach. Consequently it
can be implemented using progressively more complex structure.

In its simplest form we can only set a number of attributes on a single node, while in its most
complex form it can perform the setting of a large number of parameters on a hierarchy of node and
can execute commands on specific nodes.

We propose to implement a single command on all nodes. Let's call it setParam. This command
behaviour is completely defined by a single self-describing text parameter. Let's assume a Json
format for this parameter, but other formats can be easily implemented. In the present Tango
implementation this string parameter can be passed along as command parameter. In future, we
expect to exploit the the proposed TANGO REST interface.1

The program handling of a Json string can became trivial by means of the numerous library
implementations available for all TANGO programming languages2.

It its simplest form setParam command just set different attributes to specific values In this case :

{
“scanTime”: “34.12” , // scan (integration) time
“beamBw”: “2”,
“accelerationRange” : “0”,
“DispersionMeasure”: “300”,...

}

In a more complex implementation, the attributes values can be specified also for lower level
devices:

“CSP” : {
“scanTime”: “34.12” , // scan (integration) time
“beamBw”: “2”, …

}
“PSS” : {

“accelerationRange” : “0”,
“DispersionMeasure”: “300”,...

}

In the most complete implementation, attribute setting can be mixed with command execution on a
hierarchy of devices. Examples of this approach can be found as the possible implementation of
uses cases in the following sections. A particularly suggestive example can be found in section 3.16.

1 Such approach is different and, in SKA case, more efficient than the SetParameters command. For the self-
describing nature of Json coding error risk is reduced and also there is no more the necessity to transfer always ALL
parameters

2 As an example, using C++/nlohmann implementation, (https://github.com/nlohmann/json), one can simply write:
json j; j[“scanId”]=34; j[“sourceName”]=”CrabPulsar”;

https://github.com/nlohmann/json

3 Execution of Settings.
We analyse some setting commands. For brevity we put many commands in the same json packet
(par 3.1). To have meaningful error reports it should be a good practice to put a single action on
each command.

As an alternative approach, we can implement elementary commands for each action to be sent
separately (cfr par 3.4).

3.1 Commands to initialize sub-array(s) – Slave SubArrays
elementary commands

This use case is analysed using the most complete form of setParam command. Here we use two
different calls.

Command: createSubArray From: TM Destination: CSP.LMC (cspMaster).
Argument: Json String {
“activationTime”: “10:30:00”, // should be a Unix time
“sourceId”: “TM”,
“commandId” : “123456”, // identifies this execution
“createSubArray”: { // init

“subArrayId”: “0”,
“antennasList”: “0,1,2,3,4,10,100”,
“creationDate”: “20160310 10:30:00”,
“administrativeMode”: “enabled”,
“observingMode”: “0”, // idle

}

Command: createSubArray From: TM Destination: CSP.LMC (cspMaster).
Argument: Json String {
“activationTime”: “10:30:00”, // should be a Unix time
“sourceId”: “TM”,
“commandId” : “123457”, // identifies this execution
“createSubArray”: { // init

“createSubArray”: { // we do not assume a single device
“subArrayId”: “1”,
“antennasList”: “10,11,12,13,14,20,100”, // generate an error on 100!
“creationDate”: “20160310 10:30:00”,
“administrativeMode”: “enabled”,
“observingMode”: “0”, // idle

}
}

3.2 Details of Execution
Here we will display the execution of the command above, split among the different LMC
components.

CSP.LMC SubArray{0-15} Antennas

Receive the command from TM

Acknowledge command 123456

Identify the CSP section and parse it

Verify if subArray 0 is already
initialized and has Antennas allocated

Report status of subArray 0 and
allocated Antennas

Verify the availability of requested
Antennas

Reports the availability of Antennas

If subArray 0 already
has Antennas allocated
Rise error → End of Command

If subArray 0 is not IDLE
 Rise error →End of Command

Allocate 0,1,2,3,4,10,100 to
subArray 0

Register Antennas 0,1,2,3,4,10,100
on subArray 0

Register Antennas 0,1,2,3,4,10,100 to
subArray 0

Write other attributes to SubArray
(creationDate, administrativeMode,
observingMode, ...)

Update other attributes to SubArray

Acknowledge successful execution of
command 123456

Acknowledge command 123457

Verify if subArray 1 is already
initialized and has Antennas allocated

Report status of subArray 1 and
allocated Antennas

Verify the availability of requested
Antennas

Reports the NON availability of
Antennas

Detects conflicting Antenna
Assignation Rise error

Acknowledge unsuccessful execution
of command 123457

3.3 Discussion
This command assumes 16 Tango devices for subArrays. These devices are very simple (slave
implementation).

In this scenario the CSP createSubArray command programs both SubArray and Antennas
structures. This command is executed directly.

The conflict exception on antenna 100 will be raised by CSP.Master device.

In this approach each command receives its commandId from TM.

Figure 2: SubArray Initialization flow of operations. Errors in red,
Capabilities in purple.

3.4 Command to initialize sub-array(s) – Slave SubArrays
Compounded Commands

In this analysis we have defined a general container command setParam which accept as argument
a json string containing setting of parameters or commands to be executed on local or lower level
servers.

Command: setParam From: TM Destination: CSP.LMC (cspMaster).
Argument: Json String {
“activationTime”: “10:30:00”, // should be a Unix time
“sourceId”: “TM”,
“commandId” : “123456”, // identifies this execution
“CSP” : {

“createSubArray”: { // init
“subArrayId”: “0”,
“antennasList”: “0,1,2,3,4,10,100”,
“creationDate”: “20160310 10:30:00”,
“administrativeMode”: “enabled”,
“observingMode”: “0”, // idle
“commandId” : “123456/1”, // identifies this execution

}
“createSubArray”: { // we assume a single device

“subArrayId”: “1”,
“antennasList”: “10,11,12,13,14,20,100”, // generate an error on 100!
“creationDate”: “20160310 10:30:00”,
“administrativeMode”: “enabled”,
“observingMode”: “0”, // idle
“commandId” : “123456/2”, // identifies this execution

}
}
}

3.5 Details of Execution
Here we will display the execution of the command in section Error: Reference source not found
split in the execution in the various software components.

CSP.LMC subArray{0-15} Antennas

Receive the command from TM

Acknowledge command 123456

Identify the CSP section and parse it

Spawn the execution of first command
(123456/1)

Verify if subArray 0 is already
initialized and has Antennas allocated

Report status of subArray 0 and
allocated Antennas

Verify the availability of requested
Antennas

Reports the availability of Antennas

If subArray 0 already

CSP.LMC subArray{0-15} Antennas

has Antennas allocated
Rise error → End of Command

If subArray 0 is not IDLE
 Rise error →End of Command

Allocate 0,1,2,3,4,10,100 to
subArray0

Register Antennas 0,1,2,3,4,10,100
on subArray0

Register Antennas 0,1,2,3,4,10,100 to
subArray 0

Write other attributes to SubArray0
(creationDate, administrativeMode,
observingMode, ...)

Update other attributes to SubArray0

Acknowledge successful execution of
command 123456/1

Spawn the execution of second
command (123456/2)

Verify if subArray1 is already
initialized and has Antennas allocated

Report status of subArray1 and
allocated Antennas

Verify the availability of requested
Antennas

Reports the NON availability of
Antennas

Detects conflicting Antenna
Assignation Rise error

Acknowledge unsuccessful execution
of command 123456/2

Acknowledge unsuccessful execution
of command 123456

3.6 Discussion
This command assumes 16 Tango devices for subArrays which are very simple (slave
implementation).

In this scenario the CSP createSubArray command programs both SubArray and Antennas
structures.

The conflict exception on antenna 100 will be raised by CSP.Master device.

This approach implements a single 'container' command (setParam) which acts as spawner for the
CSP createSubArray commands (and many more).

In this approach each sub-command receives its commandId from TM.

3.7 Command to allocate beams to SubArrays
In this analysis we have defined a general container command setParam which accept as argument
a json string containing setting of parameters or commands to be executed on local or lower level
servers.

Command: setParam From: TM Destination: CSP.LMC (cspMaster).
Argument: Json String {
“activationTime”: “10:31:00”, // should be a Unix time
“sourceId”: “TM”,
“commandId” : “123456”, // identifies this execution
“CSP” : {

“allocateBeams”: { // init
“beamsType”: “PSS”, // it can be PSS, PST and VLBI
“subArrayId”: “0”,
“beamsCount”: “5”,
“creationDate”: “20160310 10:31:00”,
“commandId” : “123456/1”, // identifies this execution

}
}
}

3.8 Details of Execution
Here we will display the execution of the command in section Error: Reference source not found
split in the execution in the various software components.

CSP.LMC subArray{0-15} PssBeams Capability

Receive the command from TM

Acknowledge command 123456

Identify the CSP section and parse it

Spawn the execution of command
(123456/1)

Verify if subArray0 is already
initialized and has Antennas allocated

Report status of subArray0 and
allocated Antennas

If subArray 0 has not
any Antennas allocated
Rise error → End of Command

If subArray 0 is not IDLE
 Rise error →End of Command

Ask PssMaster list of available PSS
Resources

If avalable PSS Resource are less than
requested beams
 Rise error →End of Command

Ask CbfMaster list of available CBF
Beams Resources

If avalable CBF Beams Resource are
less than requested beams
 Rise error →End of Command

CSP.LMC subArray{0-15} PssBeams Capability

CSP.LMC creates a correspondence
table between
PSS Resource and CBF Beams

CSP.LMC update PssBeam Capability Update the PssBeam
correspondence table

CSP.LMC update SubArray Capability Update the implemented PssBeam
table

If avalable subArray PssBeam table is
full
 Rise error →End of Command

Write other attributes to SubArray0
(creationDate, administrativeMode,
observingMode, ...)

Update other attributes to SubArray0

Acknowledge successful execution of
command 123456/1

Acknowledge successful execution of
command 123456

3.9 Discussion
This command assumes 16 Tango devices for subArrays which are very simple (slave
implementation) as is assumed a simple PssBeams Capability device.

In this scenario the CSP allocateBeams command programs both SubArray and PssBeams
structures.

This approach implements a single 'container' command (setParam) which acts as spawner for the
CSP allocateBeams commands (and many more).

In this approach each sub-command receives its commandId from TM.

Proposal: the acknowledges for a command are sent to TM, while the acknowledges for sub-
commands are handled by CSP.

Figure 3: Graphic flow of beam allocation operations. Error handling in red, Capabilities in purple
and SubDevices in green

3.10 Command to remove an antenna from a sub-array
In this analysis we have defined a general container command setParam which accept as argument
a json string containing setting of parameters or commands to be executed on local or lower level
servers.

Command: setParam From: TM Destination: CSP.LMC (cspMaster).
Argument: Json String {
“activationTime”: “10:30:00”, // should be a Unix time
“sourceId”: “TM”,
“commandId” : “123456”, // identifies this execution
“CSP” : {

“removeAntennas”: { // init
“subArrayId”: “0”,
“antennasList”: “0,1”,
“creationDate”: “20160310 10:30:00”,
“commandId” : “123456/1”, // identifies this execution

}
}
}

3.11 Details of Execution
Here we will display the execution of the command in section Error: Reference source not found
split in the execution in the various software components.

CSP.LMC subArray{0-15} Antennas

Receive the command from TM

Acknowledge command 123456

Identify the CSP section and parse it

Spawn the execution of first command
(1234561)

Verify if subArray0 is already
initialized and has Antennas allocated

Report status of subArray0 and
allocated Antennas

Verify the availability of requested
Antennas

Reports the availability of Antennas

If subArray 0 does not have
specified Antennas allocated
Rise error → End of Command

Deallocate Antennas 0,1from
subArray0

Deallocate Antennas 0,1 from
subArray0

Deallocate Antennas 0,1 from
subArray 0

Acknowledge successful execution of
command 123456/1

Acknowledge successful execution of
command 123456

3.12 Discussion
This command assumes 16 Tango devices for subArrays which are very simple (slave

implementation).

In this scenario the CSP removeAntennas command programs both SubArray and Antennas
structures.

This approach implements a single 'container' command (setParam) which acts as spawner for the
CSP createSubArray commands (and many more).

In this approach each sub-command receives its commandId from TM. The same analysis apply to
the command addAntennas.

Proposal: the acknowledges for a command are sent to TM, while the acknowledges for sub-
commands are handled by CSP.

Figure 4: Fow of remove Antenna execution. Capabilities in purple, Errors in
red.

3.13 Set up of an image observation
In this analysis we have defined a general container command setParam which accept as argument
a json string containing setting of parameters or commands to be executed on local or lower level
servers.

Command: setParam From: TM Destination: CSP.LMC (cspMaster).
Argument: Json String {
“activationTime”: “10:31:00”, // should be a Unix time
“sourceId”: “TM”,
“commandId” : “123456”, // identifies this execution
“CSP” : {

“GlobalValues”: { // init of internal variable common to all subsystems
“subArrayId”: “5”,
“ObservingMode”: “1”, // imaging
“commandId” : “123456/1”, // identifies this execution

}
}
“CBF.Master”: {

 “setSubArray”:{ // specialized command
“subArrayId”: “5”, // in the fifth slot we host subArray 5
“ObservingMode” : “1”, // imaging (this will be updated automatically?)
“scanId”: “AB45-34”, // We store scanId for subArray 5
“scanTime”: “34.12” , // scan (integration) time
“subArrayObsMode”: “1”, // imaging
“programming Parameters” : { … } // hardware related parameters
“commandId” : “123456/2”, // identifies this execution

}
}
}

3.14 Details of Execution
Here we will display the execution of the command in section Error: Reference source not found
split in the execution in the various software components.

CSP.LMC subArray{0-15} CBF.Master

Receive the command from TM

Acknowledge command 123456
received

Identify the CSP section and parse it

Spawn the execution of command
(123456/1)

Verify if subArray5 is already
initialized and has Antennas allocated

Report status of subArray5 and
allocated Antennas

If subArray 5 has not
any Antennas allocated
Rise error → End of Command

If subArray 5 is not IDLE
 Rise error →End of Command

Acknowledge successful execution of

CSP.LMC subArray{0-15} CBF.Master

command 123456/1

Identify the CBF section, add
common values, if applicable, and
send result to CBF.Master

Receive and parse the command
1234562

Identify the target slot.
If subArray 5 is not IDLE
 Rise error →End of Command

Update local variable on subArray 5

Set the local variable in accordance to
the CBF values

Update the subArray 5 variables in
accordance to local programmed
values

Program the sub components in
accordance of local parameters

If any errors on sub components
programming
 Rise error →End of Command

Add ObservingMode 1 (Imaging) to
ObservingMode

Add ObservingMode 1 (Imaging) to
global ObservingMode

Acknowledge successful execution of
command 123456/2

Acknowledge successful execution of
command 123456
(success of 123456/1 & 123456/2)

3.15 Discussion
This command assumes 16 Tango devices for subArrays which are very simple (slave
implementation) as is very simple also the PssBeams Capability device.

In this scenario the CSP execute only the CSP portion of the command, and spawn to each sub-
element specified the relative section. A 'global' setParam section can be implemented in order to
send the same command/set to all sub-devices.

This approach implements a single 'container' command (setParam) which acts as spawner for the
CSP allocateBeams commands (and many more). Inside CSP the Sub arrays parameteres are
internally stored as an array of classes. Selected values of these classes can be accessed as array
attributes of Tango numerical types.

Proposal: the acknowledges for a command are sent to TM, while the acknowledges for sub-
commands are handled by CSP. In this approach each sub-command receives its commandId from
TM.

Successful acknowledge execution of command 123456 depends on success of commands
123456/1 and 123456/2.

The global ObservingMode update is the result of succesful update od this observing mode on both
sub-element.

3.16 Set up of a PSS observation
In this approach we have defined a general container command setParam which accept as
argument a json string containing setting of parameters or commands to be executed on local or
lower level servers.

Command: setParam From: TM Destination: CSP.LMC (cspMaster).
Argument: Json String {
“activationTime”: “10:31:00”, // should be a Unix time
“sourceId”: “TM”,
“commandId” : “123456”, // identifies this execution
“GlobalValues”: { // init of internal variables common to all subsystems

“subArrayId”: “4”,
“ObservingMode”: “2”, // PSS
“scanId”: “AB45-34”, // We store scanId for subArray 4
“numberOfBeams”: “500”

}
“CSP” : {

// CSP specific parameters
“PSSBeamID” : [“AB45-34/1”, “AB45-34/2”, … “AB45-34/500”] // 500 values
“PSSPointingCoord” : […] // 500 values
“PSSDestinationAddress” : [“10.1.1.1:4000”, … “10.1.50.10:4000”] // 500 values

}
“CBF.Master”: {

 “setSubArray”:{ // specialized command
“scanTime”: “34.12” , // scan (integration) time
“subArrayObsMode”: “2”, // PSS
“numberOfChannels”: “4096”, // PSS
“beamBw”: “2”, // PSS
“bitPerSample”: “8”, // PSS
“Filter Banks Parameters” : { … ,} // many hardware related parameters
“Delay Model Parameters” : { … },
“commandId” : “123456/2”, // identifies this execution

}
“setBeams”:{ // specialized command

“numberOfChannels”: “4096”,
“PSSBeamID” : [“AB45-34/1”, “AB45-34/2”, … “AB45-34/500”] // 500 values
“Beam Ponting Parameters” : { … }, // many hardware related parameters
“commandId” : “123456/3”, // identifies this execution

}
}
“PSS.Master”: {

 “setSubArray”:{ // specialized command
“subArrayId”: “4”, // in the fourth slot we host subArray 4
“scanTime”: “34.12” , // scan (integration) time
“subArrayObsMode”: “2”, // PSS
“beamBw”: “2”,
“accelerationRange” : “0”,
“DispersionMeasure”: “300”,
“programming Parameters” : { … } // many hardware related parameters
“commandId” : “123456/4”, // identifies this execution

}

 “setBeams”:{// specialized command
“beamBw”: “2”,
“accelerationRange” : “0”,
“DispersionMeasure”: “300”,
“PSSBeamID” : [“AB45-34/1”, “AB45-34/2”, … “AB45-34/500”] // 500 values
“programming Parameters” : { … } // many hardware related parameters
“commandId” : “123456/5”, // identifies this execution

}

}
}

3.17 Details of Execution
Here we will display the execution of the command in section 3.16 split in the execution in the
various software components.

CSP.LMC subArray{0-15} PSSBeams CBF.Master PSS.Master

Receive the command
from TM

Acknowledge
command 123456

Identify the CSP
section and parse it

Spawn the execution
of command
(123456/1)

Verify if subArray 4 is
already initialized and
has Antennas
allocated

Report status of
subArray 4 and
allocated Antennas

If subArray 4 has not
any Antennas
allocated Rise error
→ End of Command

If subArray 5 is not
IDLE Rise error
→End of Command

Acknowledge
successful execution
of command
123456/1

Identify the CBF
section, add common
values, if applicable,
and send result to
CBF.Master

Receive and parse the
command 1234562

Identify the PSS
section, add common
values, if applicable,
and send result to
PSS.Master

Identify the target slot.
If subArray 4 is not
IDLE Rise error →End
of Command

Receive and parse the
command 1234564

CSP.LMC subArray{0-15} PSSBeams CBF.Master PSS.Master

Update the BeamPSS
variables according to
local programmed
values

Set the local variable
in accordance to the
CSP.Master values

Update local variables
on subArray 4

Identify the target slot.
If subArray 4 is not
IDLE Rise error
→End of Command

Set the local variable
in accordance to the
CBF.Master values

Update the subArray 4
variables according to
local programmed
values

Update local variables
on subArray 4

Set the local variable
in accordance to the
PSS.Master values

Program the sub
components in
accordance of local
parameters

Update the subArray 4
variables according to
local programmed
values

If any errors on sub
components
programming
 Rise error →End of
Command

Acknowledge
successful execution
of command 123456/4

Acknowledge successful
execution of command
123456/2

Receive and parse the
command 123456/5

Receive and parse the
command 123456/3

Identify the target slot.
If subArray 4 is not
IDLE Rise error
→End of Command

Identify the target
beams. If beams are not
IDLE Rise error →End
of Command

Update local variables
on Beams

Set the local variable
in accordance to the
PSS.Master values

Update local variables
on beams

Update the BeamPSS
variables according to
local programmed
values

Set the local variable
in accordance to the
CBF.Master values

Update the beamsPSS
variables according to
local programmed
values

Program the sub
components in
accordance of local
parameters

Program the sub
components in
accordance of local
parameters

If any errors on sub
components
programming
 Rise error →End of
Command

If any errors on sub
components
programming
 Rise error →End of
Command

Add Mode 2 (PSS) to
ObservingMode

Add ObservingMode
2 (PSS) to global
ObservingMode

Add Mode 2 (PSS) to
ObservingMode

Acknowledge
successful execution
of command 123456/5

CSP.LMC subArray{0-15} PSSBeams CBF.Master PSS.Master

Acknowledge
successful execution
of command 123456

Acknowledge successful
execution of command
123456/3

3.18 Discussion
This command assumes 16 Tango devices for subArrays which are very simple (slave
implementation) as is very simple also the PssBeams Capability device.

In this scenario the CSP execute only the CSP portion of the command, and spawn to each sub-
element specified the relative section. A 'global' setParam section can be implemented in order to
send the same command/set to all sub-devices.

This approach implements a single 'container' command (setParam) which acts as spawner for the
CSP allocateBeams commands (and many more). Inside CSP the Sub arrays parameteres are
internally stored as an array of classes. Selected values of these classes can be accessed as array
attributes of Tango numerical types.

The global ObservingMode update is the result of succesful update od this observing mode on both
sub-element.

In this approach each sub-command receives its commandId from TM.

Proposal: the acknowledges for a command are sent to TM, while the acknowledges for sub-
commands are handled by CSP.

Successful acknowledge execution of command 123456 depends on success of commands
123456/1, 123456/2, 123456/3, 123456/4.

At the end of scan the Beam-PSS and CBF automatically mark free the allocated resources, (can be
implemented by an event handler inside CSP-Master).

Figure 5: Flow of operations for set-up of a PSS Observation.

Appendix 1 : Mapping between SKA State and Mode
and Tango state

In SKA environment there are some variables which define the global status of each Element. The
main internal variable is the Operating State which has a direct mapping to the Tango State
attribute.

The full list of SKA status variable is:

• Control Mode;
• Operational Mode;
• Administrative State/Operating State;
• Health State;
• Usage State;
• Simulated State;
• Sub-array State: this is applicable for sub-arrays only. It assumes only a sub-set of the

Operational State values, so it can be implement in the same way as Operational State.

Here we propose a schema for the implementation of SKA status as Tango attributes.

Operating State (SKA) versus State (Tango) attributes.
In Tango, there are two variables which refer to the logical state of the device (State) and a string
description of the current state value (Status). In SKA the corresponding value has the name of
Operational State.

SKA Operational State has eight possible values, while Tango state has 14 possible values.

In Table 1 we propose a possible mapping between the SKA values to the nearest Tango ones.

We have two possible alternatives:

1. To implement the Operational State as a DevState Tango type. This approach guarantees the
availability of the Tango State Machine, a facility to allow/deny the execution of commands
when the Element is in a particular state.

2. To implement the Operational State as a Tango short type attribute. At present, we are going
to implement into the CSP.LMC prototype.

This choice permits the use the same SKA values for this attributes, using the C++ 11 way
of enum declaration but, at the same time, we loses the Tango State Machine functionality.

SKA Tango

OFF This is a Powered off state. OFF

READY This suggests that the Element is ready to operate ON

SHUTTING-DOWN This is a transient state in which the Element is
shutting down.

MOVING

HYBERNATE Special non-operational state in which Entity has
been placed after intialization. From this state it
can transit to OFF or SLEEP.

DISABLE

SLEEP Special non-operational state in which Entity has
been placed to reduce power consumption. From
this state it can transit to HYBERNATE or
READY.

STANDBY

FAILED An Element reports an ‘Error’ state when it
detects a problem that affects its ability to accept
certain commands or execute certain
processes/operations.

FAULT

UNKNOWN: TM is not aware of actual state of Element. UNKNOWN

INITIALIZING: This is a transient state in which the Element
exists when it is starting up its processes.

INIT

Table 1: Possible correspondence between SKA Operating State and Tango State.

Status and Mode variables
In the SKA framework, beside the Operating State, there are 6 others main variables which
describe the basic properties of an Element (and, lower level entities). We propose to implement
them as Tango attributes of short type. The other alternative is to use the more natural enum types.
We believe, however, that this feature, recently added to Tango 9, don't fit well to our scope.

As support to this choice we note that the ObservingMode attribute has to be implemented as a bit-
mask type, because several types of observations can be done in parallel. So the overall observing
status is the combination of different values. The Tango enum type can assume only consecutive
values, so it can't be used to represent the value of a mask.
Another problem arise as Tango enum type cannot be declared as Array. In the CSP there are many
examples of device whose instances should be handled in parallel, so we definitively needs array of
enum.

Moreover, the Tango developers strongly suggest the use of Pogo as code generator of a Tango
Device. We have verified that Pogo still handles enum type attributes in a way unsuitable for our
purposes.

SKA Tango name

Administrative Mode
(alternative to
operating Mode)

Enabled Element can be administered

Disabled (Default) Normal Operations

Maintenance Element under maintenance

Not-Fitted the Element/sub-element is not fitted.

Administrative Mode

Simulated Mode Real The element is a real hardware

Local The element is simulated

Simulated Mode

Observing Mode Idle The element is idle.

Imaging The element is observing images

PSS The element is performing PSS

PST The element is performing PST

VLBI Performing VLBI observations

Transient search The element performs transient search

Observing Mode
MASK of bits

Test Mode Normal Element is in normal working
condition

Test Element is under test

Test Mode

Redundancy State Active Redundancy is enabled

Standby Element is in standby

Redundancy State

Table 2: Proposed status variable

Health State Normal Element is in normal working condition

Degraded Element is functioning in degraded condition when subset
of its functionality is compromised or unavailable.

Failed Implies when there is major failure that prevents Element to
perform its function.

NotOperable Element is not available for observations due to missing
dependencies.

Health State

Table 3: Synopsis of proposed mapping of SKA Status and Mode variable to Tango Attributes.

Appendix 2: Investigate beams/capabilities
Here we try to investigate how the PSSBeams Capability and the PSS-Resources on PSS Master
overlap in their description attributes.

The PSSBeams Capability is, for us, only a more organized way of seeing the elementary
components of the PSS. For this reason we suggest to implement the PSSBeam Capability as a
Tango Device that only reports information.

We discuss the Mid scenario, while the Low case can be extrapolated.

One PSS node can process from 2 to up 12 CBF-beams.

N PSS.MID nodes with their M parallel data processing pipeline form the N * M = 1500 PSS-
Resources.

256 FPGA boards of the CBF.MID can form up to 1536 CBFBeams used by the PSS.MID.

A resource at PSS level corresponds to a single software data pipeline processing data coming from
the associated CBF-beam.

Each PSS-Resource is identified by:

• a name corresponding to the Tango device name (running on a PSS node).

• an IP Address-port combination for data input

• a SDP IP Address-port combination for output products.

• A symbolic name, for instance: Node_RR_PCX where RR is the rack, PC is the PC

sequential number, and X is the pipeline identifier

After initialization, the CBF.LMC and PSS.LMC communicate to CSP.LMC (asynchronously or on
CSP.LMC direct request, TBD) the list with their available resources.

The association PSS-resource → CBF-beam is done by the CSP.LMC when, on TM request, it is
asked to allocate a number of PSS resources to a sub-array.

This association represents what we call a PSSBeam.

Our plan is to implement the PSSBeams Capability as a single Tango Device that exports towards
the Tango Clients a limited set of attributes (HealthState, ProgressStatus, …) and implements, as
private attributes, 1500 instances of a PSSBeam Class which collects all the basic information to
fully describe the PSSBeams Capability, as for example the table with the complete association
between the PSS-Resources and the CBFBeams.

In our view, this device is comparable to an up-to-date register containing all the needed
information about the PSSBeams.

The PSSBeams Capability Tango Device communicates with:

• CSP.LMC: PSSBeam Capability device works as a client. The CSP can read the Health

Status of the PSS Beams and can ask the list with the association between PSSResourcess-
CBF.Beams.

• CBF.LMC: the PSSBeam Capability device subscribes on it a number of attributes

(HealthState of the FPGA boards) to get the updated value of the CBFBeams.

• PSS.LMC: the PSSBeam Capability device subscribes on it a number of attributes

(HealthState of the PSSBeams and/or PSS Beams node, pipeline data processing progress...)
to get the updated value of the PSSBeams.

Attribute Pss-Resource Pss-Beam capability

OperationalState It is the operational state of the
data pipeline

Capabilities do not implement the
Operational State.
It can be reported the information
about the progress status of data
processing.

ObservingMode Is the observing Mode setted by
the SubArray
In this case we can have a
combination of
PULSAR_SEARCH and
TRANSIENT_SEARCH

The same

Health Status The health status is linked to the
status of the harware/software
processing the data
Normal: if the parallel processor
and the pipeline are ok
Not-operable: the processor is not
operable and/or the pipeline is not
running
Degraded: For example if the
PSS pipeline can't ouput the
products to SDP (?)

The health is a composition of:
- the status of the hardware and
software of the CBF FPGA boards
- the status of the PSS node hardware
and software
- the status of the single parallel
processor and pipeline software

The PSSBeams Capability device
has to subscribes a change-event
both on the health status of the
PSSResources and on the health
status of the CBFBeams.

Administrative Mode Is set by TM
ENABLE
DISABLED
MAINTENANCE
NOT FITTED
The cases disabled and not-fitted
has to be reported by PSS.LMC as
PssResource not available. In this
case the CSP can't use it to build
the corrispondence.
For maintance I don't know.
If TM changes the administrative
mode of a PSS resource, the list of
PSSResources has to be updated

Read Only

Same states as the PSSResource,
except for Maintenance. This is a
result of the the composition of two
available resources.

Proposal:
Internally set to ENABLE if all
components are ENABLED, else set
to DISABLED

and the CSP.LMC has to rebuild
the list of available resources. The
same for CBF beams.

Usage State IDLE : is not processing data
USED: if Observing Mode is
PULSAR_SEARCH and/or
TRANSIENT_SEARCH

For a capability this status is
reported by the ObservingMode.
IDLE: if no observation required
USED: if ObservingMode is
PULSAR_SEARCH and/or
TRANSIENT_SEARCH

Belongs to subarray/
Used by sub-arrays

Each PSS resource processes data
coming from only one CBFBeam
that belongs to only one subarray.
It reports the ID of the sub-array

Each PSS Beam belongs to only one
sub-array.
It reports the ID of the sub-array.

Monitoring point For a PSSResource the monitoring
points are:
- the parallel process temperature,
voltage, frequency
- the pipeline process status.
A failure of the processor and/or
the pipeline generates an alarm.
If the node on which a PSS-
resource data pipeline is running
fails, an aggregated alarm has to be
generated because in this case M
resources fail all together.
The failure is signalled to
CSP.LMC that has to update the
matching list between the available
PSS-resources and CBF-beams.

The monitoring points in this case
are the union of the monitoring
points of the PSSResource and of the
CBF Beam.

Proposal: a link to low level
summary of these.

Used by Capabilities A PSS resource can be used only
by one sub-array at time.
Reports the ID of the sub-array

The same

List of
command/messages in
progress and in waiting
or revoked commands

This list can be reported by the
PSS.LMC that should implement a
command queue.
The single PSS-Resource does not
implement any command queue
capability

The same

List of components The components of the node to
which the PSS resource belongs.

The union of the components
generating the PSS resource and the
CBFBeam

List of active alarms
List of implemented
alarms

	Abstract
	1 Structure
	2 Proposed Set/Command bundle
	3 Execution of Settings.
	3.1 Commands to initialize sub-array(s) – Slave SubArrays elementary commands
	3.2 Details of Execution
	3.3 Discussion
	3.4 Command to initialize sub-array(s) – Slave SubArrays Compounded Commands
	3.5 Details of Execution
	3.6 Discussion
	3.7 Command to allocate beams to SubArrays
	3.8 Details of Execution
	3.9 Discussion
	3.10 Command to remove an antenna from a sub-array
	3.11 Details of Execution
	3.12 Discussion
	3.13 Set up of an image observation
	3.14 Details of Execution
	3.15 Discussion
	3.16 Set up of a PSS observation
	3.17 Details of Execution
	3.18 Discussion

	Appendix 1 : Mapping between SKA State and Mode and Tango state
	Operating State (SKA) versus State (Tango) attributes.
	Status and Mode variables

	Appendix 2: Investigate beams/capabilities

