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Abstract

The Tile Processing Module is a board performing the data acquisition, channelisation and beamforming
for 16 antennas in the SKA LoW Frequency Aperture Array instrument. 16 TPMs are connected using a 40
Gb Ethernet network, to compose a LFAA station with 256 antennas. The LFAA signal processing firmware
is composed of modular elements, which are programmed using a standard memory mapped interface. Each
module is managed by a software element (plugin), written in Python, which allows a higher level software
to manage the board using a standardized set of functions. Here the interface for each module, and the
associated plugin, is described for all modules used in the TPM signal processing chain.



1 Introduction

The Italian Tile Processing Module is a module that digitizes the signals form 16 LFAA antennas, combining
them digitally into a tile beam. 16 iTPMs combine together their tile beams in one station beam, that is sent
to the CSP for further processing. In this way 256 antennas and 16 TPMs operate as a single electronically
steerable LFAA station.

The iTPM is programmed using a generic control protocol. Each board interfaces with the control system
using a 1 GbE interface, with a simple UDP based protocol that allows to read and write a number of memory
mapped registers and buffers. A software layer, written in Python, abstracts the control functions for each
functional module in the board.

This report describes the programming interface for the portion of the iTPM that deals specifically with
the signal processing functionality. For each module both the register level hardware interface and the
Python module (plug-in) are described.

Section 2 describes the general structure of the iTPM firmware, of the signal pocessing chain and of
the control software. Section 3 and subsequent ones describe the hardware and software interfaces for each
module. Section 8 describes the front panel test point interface.

2 General overview of the iTPM firmware

Each iTPM contains two FPGAs, each one processing the signals from 8 antennas, according to the functional
diagram in figure 1. iTPM firmware is identical in the two FPGAs. Behavior differences are selected using
a dedicated FPGA input pin.
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Figure 1: Signal processing in the iTPM

The firmware is composed of 3 concentric firmware layers:

• The board layer, containing board specific functionalities. Changing the board which implements the
iTPM should cause changes only in this layer. In reality changes will have to occur also in the I/O
ring layer, as this includes hardware specific device interfaces, e.g. with memory or Ethernet interfaces.
Some DSP modules are specifically optimized for the Kintex family, but a generic, hardware agnostic
version is also available and can be selected using VHDL generics.

• The input/output ring. This contains the physical interfaces to the ADC converter, 10/40 GB Ethernet,
FPGA-to-FPGA interconnection, DDR memory and physical sensors. It also contains the AXI4 bridge
ad distribution, and the streaming UDP interface towards the 1GB Ethernet port. It also contains
clock and timing generation logic. (Figure 2)

• The DSP functionality. This layer is application specific, and contains the channelizer, beamformer,
total power meter, and the diagnostic functionalities that allow monitoring and displaying of the signal
at various processing stages. (Figure 3)



Each layer is composed of self-contained firmware blocks. Most of the block interface signals consists in
a slave AXI4lite bus, for control, clock and reset signals, and data streams that use the AXI4 streaming
interface. Specific structured types, common to the whole project, are used to define these busses. A
top level, or wrapper module, is used to hold together the low level module (e.g. a proprietary core
for a peripheral interface), the AXI4lite control interface and to translate signals from any internal bus
format to the used AXI4 stream.

2.1 Control interface

The system is logically and functionally divided into modules. Registers for each module are described in
a XML file, that is used in the firmware generation process to actually produce the VHDL code for the
interface. These files are combined together to generate a symbol map for the whole board.

A copy of this file is also stored in a ROM included in the FPGA personality, that is used as a symbol
table by the the control software to transparently access the registers using only symbolic names. Each
register and bit field is identified by a hierarchic name, including the device (e.g. fpga1), the module name
(e.g. adc_power_meter), the register name and optionally the bit field. For example the reset bit for the
signal test generator in the first FPGA is symbolically addressed as fpga1.test_generator.control.reset
This architecture is described in detail in the Pyfabil access layer manual [7].

The low level program software may access each register directly. A higher level of abstraction is imple-
mented by a software module, written in Python, that is accessed using a limited set of functional methods.
Modules are included in the main driver software as plug-ins, that are seen as object elements of the tile

object. Whenever possible, parameters for the plug-in methods are given in physical units. Synchronization
is performed on multiples of 256 ADC frames (276.48 µs).

2.2 Input/output ring

The input/output ring structure is described in the block diagram in fig. 2. Most interfaces use the vendor
specific cores, enclosed in a top level wrapper that provides synchronization, an interface to the register
architecture described in section 2.1, and maps the internal data stream to an AXI4 standard stream. These
blocks are described in more detail in the firmware design document[2].

The analog-to-digital converters are interfaced via high speed links using the jesd204_if_top module,
that includes the vendor specific JESD 204 core, plus the timing registers and state machine for the initial
synchronization.

The ddr_interface_top module instantiates the vendor DDR interface, that provides DDR timing cal-
ibration, and maps its user interface to an ddr_user bus, presenting a standard, simple to use, memory
interface.

The f2f_x_top interfaces use a high speed multiplexed bus, composed of two 18 LVDS lines, to implement
a virtual parallel bus of 144+144 lines at 156.25 MHz. The f2f_muxdemux module converts this into two
monodirectional busses of 105 lines running at 200 Mhz.

The c2c_axi4lite and axi4s_c2c modules respectively provide an AXI4linte master control interface
and an UDP output stream, using the custom c2c bus. This in turn interfaces to the 1 GbE board control
interface.

The multi_udp_core implements the UDP protocol layer for 4 Ethernet links. The eth10_g_base pro-
vides the Ethernet layer for the 4 10GbE links that compose the 40 GbE interface. In future releases, these
will be replaced by a single instance of a 40 GbE Ethernet and UDP layers.

The clock_manager manages tha generation and synchronization of all clocks used in the design. The
pps_manager receives the PPS signal, and synchronizes it to the internal main clock, resolving potential
clock ambiguities.

2.3 The signal processing layer

The signal processing algorithm and structure is described in more detail in [6]. Its overall structure is
described in figure 3.

Modules in the left column process the digitized samples into station beamformed samples, that are sent
over the UDP 10/40 GHz link (udp_tx_arr stream in fig. 2 and fig. 3). Modules in the right column are
used for monitor purposes. The programming interface is not shown. Each module is interfaced to the global
Axi4lite control bus, and is addressed using a symbolic module name plus a register name. Module names
are listed in table 1.



Figure 2: Internal block diagram of the input/output ring

Register ID VHDL Module Description
test_generator sample_test_generator Test signal generator and delay

equalization
channelizer channelizer2_wrap Channelizer equalization
beamf_fd beamf_fd_wrap Tile (frequency domain) beamformer
beamf_cal beamf_fd_wrap Beamformer gain, phase and

polarization calibration
beamf_ring beamf_ring_oa Station beamformer
adc_power_meter total_power_rfi_axi4 Wideband total power meter and

RFI detector
lmc_gen axi4s_lmc_gen Local monitor and control spigot

generator
side_channel_integrator lmc_integrated_gen Coarse spectrometer and integrator

Table 1: Register ID for the software modules, and corresponding firmware modules in the DSP ring

ADC samples from the JESD core (jesd_core stream in fig. 2 and fig. 3) are optionally substituted with
a test signal, and then aligned in the test signal generator. Each input signal is delayed by a fixed number
of samples, to compensate for cable mismatch, but not for geometric delay due to beam steering. Aligned
samples (jesd stream) are then channelized into 512 equispaced frequency channels. Channelization is a
fixed operation that requires no parameters. At the channelizer output the signal is rescaled by a power of
two, with a granularity of one spectral channel and one antenna. The rescaling is performed by discarding a
number of bits in the channelizer result, is the same for all beams, and is used to bring the signal amplitude in
a correct range for subsequent operations. Resulting samples are available either as 12+12 bits (channelizer
stream) or 8 + 8 bits complex samples (channelizer_mon8 stream), for monitor purposes.

Tile beamforming requires several parameters, to specify the spectral region(s) being processed, the
calibration coefficients for each antenna, polarization, frequency channel and beam, and the delay/delay
rate for each antenna and beam. Delay is applied as a phase proportional to the frequency of the channel.
Any nonlinear phase is included in the calibration coefficients. Tile beamformed samples are re-quantized
to 12 + 12 bits (beamformer12 stream). These samples are expanded to 16 bits in the monitor section
for practical reasons. Odd and even samples are exchanged across FPGAs using the f2f bus (modules
f2f_muxdemux and f2f_top in figure 2).

Samples for each tile beamformer composing a station are added together in the station beamformer,



Figure 3: Internal block diagram of the DSP ring

and are then framed in CSP frames. Control points in this module are used to specify frame timing, format,
and header content.

Raw samples are monitored in the total power module, that performs also a simple check for RFI presence.
The integration time and threshold level for RFI detection are programmable.

A calibration spigot is formed by re-quantizing to 8 bits the samples for all antennas and polarizations
and one specific spectral channel, at the channelizer output. These samples are organized in frames, with a
SPEAD header (fig. 3 stream lmc_udp), and sent over the 40 GbE interface (stream udp_tx_arr). Parameters
include the channel to be sent, and the start and stop time for the transmission. The destination IP address
is specified in the 40 GbE interface. Spigots of the signal at various processing stages is also available for
monitor and debug purposes.

Integrated spectrum of channelized and tile beamformed signals can be calculated. The integrator inter-
face includes the signal to be monitored and the integration time. The integrated packets can be sent over
the control 1GbE interface or the 40 GbE interface as UDP packets.

A summary of the signal processing sequence and required parameters (in red) is shown in figure 4.
Monitor paths are shown in blue, and associated parameters in magenta.

2.4 Unimplemented functionalities

Some functionalities that will be implemented in the final LFAA tile processing are not yet implemented,
and the corresponding programming interface has not been studied. This includes:

• Transient buffer. The structure and interfaces for the transient buffer subsystem is still in the definition
phase and therefore was not included. Transient buffer data packets will be generated in a module
included in the last tile of the station beamformer.

• Antenna sample buffer. An ECP has been raised for a buffer capable of storing a few ms of antenna
raw data. If approved, this will be implemented as a separate module, interfaced to the realigned JESD
samples stream and to the DDR memory.

• Threshold level adjustment for the RFI detector. The RFI detector is currently fixed at 1.185 (see
section 7). The RFI threshold register is implemented in the hardware interface but not used.
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Figure 4: Signal processing parameters

• Using of a single 40 GbE interface in the station beamformer, for both FPGAs. Currently each FPGA
uses its 40 GbE interface.

3 Test signal generator

The test signal generator allows the generation of simple test signals, for diagnostic purposes, and delays
the resulting signal (physical or test) by an integer number of samples, to compensate for cable mismatch
and/or to test the beamformer operations.

The test signal can be substituted to the input signals by selecting a bit mask (one bit per signal). It
is composed of up to four components, of adjustable amplitude: two independent tones, a pseudo-random
Gaussian noise, and a periodic pulse. Phase of the tones and of the Gaussian noise can be synchronized
among FPGAs by specifying a trigger time. The pulses are always synchronized with respect to input frames.
The first pulse in a frame will occur at the frame first sample.

3.1 Hardware interface

The module is accessed using the named prefix fpga1.test_generator. Registers are listed in table 2.
Frequency is specified in units of fs/2

31, i.e. 0.3725 Hz per step at 800 MHz sampling rate. Phase is
specified in 216 steps per turn. Amplitude for each component is specified as an 8 bit unsigned, in the range
0–255. The maximum amplitude corresponds to 31.875 ADC units for the two tones, 26.03 ADC units RMS
for the pseudo-random noise, and 127 units for the periodic pulses.

The periodic pulse frequency is set according to the following table:

Code Period Frequency

0 48 16.666667 MHz
1 72 11.111111 MHz
2 108 7.407407 MHz
3 144 5.555555 MHz
4 216 3.703704 MHz
5 288 2.777778 MHz
6 432 1.851852 MHz
7 864 0.925925 MHz

3.2 Software interface

The test generator is controlled by the test_generator plug-in, using the following methods:

test_generator.set_tone(dds, frequency, ampl=-1.0, phase=0.0)

test_generator.enable_prdg(ampl=-1.0)

test_generator.disable_prdg()

test_generator.set_pulse_frequency(freq_code, ampl=-1)

test_generator.set_delay(delay)



Register ID Bit width R/W Description
date_code 32 R Compile date (8 hex digits, YYYYMMDD)
control RW General control register, with subfields
.reset 1 Global reset
.load_dds0 1 Load DDS 0 on trigger event
.load_dds1 1 Load DDS 1 on trigger event
.load_prdg 1 Load pseudo-random generator seed on trigger event
.trig_force 1 Force a trigger event immediately
.trig_req 1 Request a trigger event at the specified time
.pulse_period 3 Pulse period code

gain 32 RW 8 bit gain (0-255) for each of 4 generators
.dds0 8 Gain for DDS 0 tone
.dds1 8 Gain for DDS 1 tone
.prdg 8 Gain for pseudo-random noise
.pulse 8 Gain for pulse train

frequency_0 32 RW Frequency for DDS 0
phase_0 16 RW Phase for DDS 0
frequency_1 32 RW Frequency for DDS 0
phase_1 16 RW Phase for DDS 0
prdg_seed 32 RW Seed for pseudo-random noise generator
channel_select 16 RW For each bit set, the corresponding input channel is

substituted with the test generator output
timestamp_req 32 RW Time at which the trigger is generated (frames x 256)
delay_0 8 RW Delay in samples for input channel 0 (unsigned, 4 to 255)
delay_15 8 RW Delay in samples for input channel 15

Table 2: Registers for the test signal generator and delay compensation

test_generator.channel_select(channel_select)

Methods accept frequency in Hz, amplitudes normalized in the range [0.0–1.0], phase in turns. If the
amplitude is specified as −1.0 the previous (or default) value is retained. The timestamp, if specified, is
expressed in units of 256 input frames. If not specified or set to −1, immediate load of the parameters is
assumed (thus without any phase relationship among FPGAs).

Methods set_tone, set_pulse_frequency, enable_prdg set all the parameters for the two tones, the
pulse generator and the pseudo-random white noise.

Each ADC channel has a settable delay, in steps of 1 sample and range of -123 to 127 samples. Delay
is applied after the generator and is positive for increased delay. Method set_delay accepts an array of 16
signed 8 bit integers, one per input signal.

Method channel_select accepts a 16 bit mask. For each bit set to 1, the corresponding signal is
substituted with the test signal. The test signal is the same for all inputs, but is delayed differently depending
on the values specified with set_delay.

4 Channelizer

The channelizer operates without any programmable control. It is reset by the global reset signal, and begin
producing channelized frames for each input frame, after a fixed filter preload time. Output samples are
represented as 20+20 bits complex samples, that must be re-quantized to 12 bits for further processing. As
the observed signal has a spectrum that is very far from being uniform (white), the re-quantization must
be performed on a per-channel basis. The equalization module allows to discard a variable number of bits,
in the range from 1 to 8, and produces a spectrum that is roughly equalized, making the best use of the
available 12 bits.

The 12+12 bit samples are further rounded to 8+8 bits for monitor purpose, using a fixed rounding
block.

Equalization exponent (number of bits discarded) is specified in a large table, with one entry per frequency



Register ID Bit width R/W Description
date_code 32 R Compile date (8 hex digits, YYYYMMDD)
block_sel 5 RW Memory block selection. LS bit selects which half

of the frequency range, other bits select the input signal
rescale_data 256x32 W Array of 256 words, 3 bits used in each word

Table 3: Registers for the equalization block in the channelizer

(512 total) and per signal (16). Table is divided into 32 banks, two per signal. First and second banks refer
to channels 0–255 and 256-511 respectively.

4.1 Hardware interface

The module is accessed using the named prefix channelizer. Registers are listed in table 3.
Rounding coefficients (bits to be discarded minus 1) are specified in blocks of 256 words (32 bits each,

only 3 used). First the block_sel register is set, then the 256 values are written to memory. For each
signal two consecutive blocks are used, the first for channels 0–255 (0.0–199.4 MHz), and the the second for
channels 256-511 (200.0-399.4 MHz). Operation is not synchronous, as it is not expected that these values
will be varied during the observation. Only channels 64–447 will be actually used in the observations, so
values specified outside this range are irrelevant.

4.2 Software interface

There is not a specific plug-in for this functionality. The software interface is currently implemented in the
tile method set_channeliser_truncation(trunc), that sets the truncation uniformly to the given number
of bits for all signals and frequency channels. In the future it is expected that the truncation will be managed
by the tile beamformer plug-in, as it is formally part of the calibration coefficients applied to the antenna
signals.

5 Tile beamformer

The tile beamformer receives the samples from 8 antennas, 2 polarizations, selects a subset of the frequency
channels, corrects them using calibration coefficients and beamforms them in one or more beams. Beam-
forming is performed in three steps:

• A subset of the channelized samples is selected, and a delay correction is applied in the frequency
domain (phase shift) to align them to a common station delay center;

• Samples are calibrated for amplitude, phase and polarization errors;

• Samples for 16 antennas (tile) are summed together.

The first two functions correspond to two separate programming interfaces, for the tile beamformer and
calibration modules. The tile adder requires no programming.

The tile beamformer is split among the two FPGAs in the TPM, that must be programmed in a consistent
way.

5.1 Hardware interface

The tile beamformer module is accessed using the named prefix beamf_fd. Registers are listed in table 4.
Processing is illustrated in fig. 5.

Channel selection is performed using a set of tables. The mechanism is optimized for hardware imple-
mentation, and is described in detail in [4]. A region selection table specifies a region for each group of 8
output channels. There are 16 regions in total, and up to 384 output channels (48 groups of 8 channels).
Each region is associated to a set of contiguous physical spectral channels and to a pointing beam, using
the region offset table and the beam table. The region offset is the difference between the physical channel
number and the output channel number (see [4]), and must be even. Up to 8 separate pointing directions
(beams) can be specified.

For each antenna a and each beam b, a physical delay and delay rate is specified in the delay_<b>_<a>.
For example, delay_3_2 refers to the setting for antenna 2 of beam 3. Each register is 32 bits long, with the
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upper 20 specifying the delay in hardware units of 1280/223 ns (152.6 fs, or 45.7 µm), and the lower 12 the
delay rate in units of (32/27)2−47 s/s (8.42 fs/s, or 2.54 µm/s).

Delay is specified by writing the delay registers, and actual values become effective when a trigger is
generated. This is controlled by pulsing bits control.load_delay and control.load_delay_immediate. In
the first case, the trigger will occur when the frame specified in register load_time is received. In the second
case it will occur immediately (asynchronously). Delay is adjusted for delay rate every 1024 input frames,
starting from the load time.

The calibration module has a separate interface, prefixed by the named prefix calibration. Registers
are listed in table 5. As for the equalization module, the calibration table is divided into blocks, with 4
blocks per antenna (32 total), each one 512 (384 used) words long.

The total number of channels cannot be changed once the module is initialized, or the synchronization
among the two FPGAs is lost. Therefore it is set to 384 by the software plug-in, and when less than 384
channels are used, the unused channels are discarded in the station module. The timing is not guaranteed
if the total number of channels exceeds 384, even if in theory it should work up to about 420.

Calibration coefficients are stored as two 16 bit signed quantities, with the real part in the 16 LSB and
the imaginary part in the 16 MSB. A unity gain corresponds to the value 1024, for a nominal quantization
accuracy of 0.1% in the coefficients. Each table specifies the coefficients for the specified output channels
(nominally 384) in output order. The inverse Stokes matrix for one antenna is stored into 4 consecutive
tables, one per matrix term. These tables specify the matrix in the order:

0 X polarization direct element
1 X to Y polarization cross element
2 Y to X polarization cross element
3 Y polarization direct element

The calibration coefficients may include any rotation matrix (e.g. the parallactic angle), but do not
include the geometric delay, that is specified in the beamformer module interface.

Coefficient memory is dual bank. One bank can be loaded while the other is being used for the actual cal-
ibration. Bit control.cal_table_bank is used to select between banks. Switching will occur synchronously
at time specified by load_time, or immediately if bit control.sw_table_bank is pulsed.



Register ID Bit width R/W Description
date_code 32 R Compile date (8 hex digits, YYYYMMDD)
control RW General control register, with subfields
.reset 1 Global reset
.load_delay 1 Load delay table on trigger event
.load_delay_immediate 1 Load delay table, immediate

load_time 32 RW Time at which the trigger is generated (frames x 256)
current_frame 32 R Current frame number, divided by 256
nof_chans 6 RW Total number of channels processed (divided by 8)
tp_sel 8 RW Test point selection
region_sel 48× 4 W Region selection table
beam_index 16× 3 W Beam index table
region_off 16× 9 W Region offset table
delay_0_0 20 + 12 W Delay and delay rate for antenna 0, beam 0
delay_0_7 20 + 12 W Delay and delay rate for antenna 7, beam 0
delay_7_7 20 + 12 W Delay and delay rate for antenna 7, beam 7

Table 4: Registers for the tile beamformer

Register ID Bit width R/W Description
date_code 32 R Compile date (8 hex digits, YYYYMMDD)
control RW General control register, with subfields
.cal_table_bank 1 Calibration bank used
.sw_table_bank 1 Force a bank switch immediately

load_time 32 RW Time at which the trigger is generated (frames x 256)
current_time 32 R Current frame number, divided by 256
block_sel 5 RW Memory block selection
cal_data 32 W Calibration coefficients

Table 5: Registers for the calibration module

5.2 Software interface

The Frequency Domain Beamformer plug-in, beamf_fd, controlls both the tile beamformer and the calibra-
tion modules.

The plug-in initializes the beamformer specifying a single region, in the range 50–350 MHz, with unity
calibration matrix, and using a single beam.

The plug-in instantiates the methods:

• set_regions(region_array)

• set_delay(delay_array, beam_index)

• load_delay(load_time=0)

• load_cal_curve(antenna, beam, cal_coefficients)

• load_antenna_tapering(tapering_coefs)

• load_beam_angle(angle_coefs)

• compute_calibration_coefs()

• switch_calibration_bank(load_time=0)

Regions are set by method set_regions(). The region array is a 16×3 matrix, with each row specifying
the starting channel, the size (number of channels) and the beam. The starting channel must be even
(multiple of 2) and the size a multiple of 8 channels. The beam is an index in the range 0–7. Total number
of channels must not exceed 384. If less than 384 channels are used, an extra region is created to reach 384
total channels. Hardware is programmed immediately as there is no need for synchronous operation and the
region configuration is never changed during the observation.

Calibration quantities are specified using the following methods:



• load_antenna_tapering() specifies one beamforming taper value per antenna. Default is 1.0 for all
antennas (uniform tapering). Tapering is the same for all beams. An antenna can be excluded from
the beamforming by setting its tapering coefficient to 0.0.

• load_beam_angle() specifies a parallactic angle for each beam, in radians. The angle is the same for all
antennas and defaults to zero (no parallactic adjustment). This angle is used to rotate the polarization
matrix in following the source across its diurnal motion.

• load_cal_curve() specifies a calibration curve for one antenna and beam. The calibration curve
is specified for 512 frequency points as a 512 × 4 complex matrix, with each row interpreted as a
polarization matrix. Nominal gain is specified as a [1.0 0.0 0.0 1.0] vector.

• compute_calibration_coefs() combines together all the above informations, generates the actual
calibration coefficients, and loads them in the inactive calibration coefficients memory bank.

• switch_calibration_bank() then switches the active and inactive bank, either synchronously, at the
specified time (frame number/256) or immediately.

• set_delay() specifies the delay and delay rate for a given beam. The delay argument is a 8× 2 array,
with each row specifying the delay and delay rate (in seconds and seconds per second) for one antenna.

• load_delay() then loads the delay table, either synchronously, at the specified time (frame num-
ber/256) or immediately.

6 Station beamformer

The station beamformer receives the tile beamformed samples, reorganizes them into packets, manages the
formation and accumulation of tile beams in one station beam, reformats the final packet in the format
required by the CSP and generates the CSP SPEAD header. It is described in [5] and the low level
programming interface is described in detail in [8]. The description here refers to the current module
version, which uses one separate 40 GbE link per FPGA. The final module will use a single link, in FPGA0,
but most of the hardware and firmware interfaces will remain the same.

6.1 Hardware interface

The module is accessed using the named prefix beamf_ring. Register usage is quite complex, so it has been
splitted into three parts. General timing and control registers are listed in table 6, registers used only in the
CSP formatter in table 7, and Monitor and debug registers in table 8.

Register ID Bit width R/W Description
date_code 32 R Compile date (8 hex digits, YYYYMMDD)
control RW General control register, with subfields
.reset 1 Global reset
.first_tile 1 Specifies the 1st tile of a station chain
.last_tile 1 Specifies the last tile of a station chain
.error_rst 1 Resets the error counters

frame_timing Frame temporization
.int_block_len 12 RW Integration block length
.int_block_ovl 12 RW Overlap between successive blocks

start_frame 32 RW First frame in the integration (frames/256)
last_frame 32 RW Last frame in the integration (frames/256)
current_frame 32 R Current frame being processed (frames/256)
frame_rate.first_tile 16 RW Frame rate for the first tile (TPM frames)
frame_rate.last_tile 16 RW Frame rate for the last tile (CSP frames)
ch_n 9 RW Number of processed channels

Table 6: General control and timing registers for the station beamformer

Most registers are initialized in hardware at power-up. The reset bit in the control register resets all
internal state machines. It is safe to reset the module when it is not running, and it is recommended to do
so before starting an integration.



Tiles are organized in a station chain, so the station beamformer must be set up consistently with the
routing informations provided to the 40 GbE interfaces. A chain must include a first tile and a last tile, with
each tile in the chain but the last sending 40 GbE packets to the next one. The last chain will send packets
to the CSP. First and last tiles are selected by setting the associated bits in the control register. A chain
may be composed of just one tile, in which case both bits will be set.

The first tile determines which channels are beamformed and in which order. The total number of
channels is specified by the ch_n register, and must be even. Each FPGA will process half of these channels,
with FPGA0 and FPGA1 processing even and odd channels respectively. Only the first ch_n channels from
the tile beamformer are processed, and the others discarded.

The first tile assembles TPM packets. They are formed by 256 consecutive time samples for 4 frequency
channels (4 consecutive odd or even channels in the two FPGAs), 2 polarizations, represented as 16 + 16
bit complex integers. 8 consecutive TPM packets will end up into 4 CSP packets, containing each 2048
consecutive samples for one channel, re-quantized to 8 + 8 bits. Register frame_timing specifies the higher
order sequence, expressed in CSP packets (or groups of 8 TPM packets). The sequencer will continue to
produce packets for the same set of channels for a total of int_block_len CSP packets, then will switch to
the next group of 4 channels, until all channels will be processed. Then it will process another group of time
samples, with optionally an overlap of int_block_ovl CSP packets.

This flexibility is not currently required. The default setting of int_block_len=1 and int_block_ovl=0

prduces a sequence of CSP packets with the same time interval of 2048 samples, for all channels, followed
by the next time interval again for all channels.

Packet timing is specified by the frame_rate register, and is expressed in oversampled clock cycles. It
must be low enough to transmit all required packets in a time interval shorter than the interval spanned by
the transmitted samples. Using as a reference one CSP packet (2048 samples), this interval is 2.21184 ms,
or 219 clock cycles, in which at least ch_n TPM packets must be sent. For 384 channels, the first_tile

register maximum value is 1365 (5.76 µs). Too a short value would cause packet overrun and Ethernet traffic
clogging. Using four 10 GbE links (or one 40 GbE link) for the TPM chain, the packet transmission time is
3.32 µs. A safe value for the first_tile register is around 1228 (5.18 µs), or 90% of the maximum available
time.

The CSP packets must be sent at slightly more than half this rate, since their number is half of the TPM
packet number, and they must be sent before the next group of CSP packets is available. We have chosen
a value for last_tile equal to 1.85 times that used for first_tile. This translates in a packet rate of one
every 9.58 µs per FPGA, or 4.79 µs per station.

Packet generation corresponds to the actual LFAA observation, and must start and stop synchronously
across the array. Start and stop times are specified in registers start_frame and stop_frame respectively.
Packets are generated from start frame (included) and stop frame (excluded). Specifying a start frame of 1
and a stop frame of 0xffffffff produces a continuous, never stopping flow of packets.

All timing registers are effective only in the first and last tiles in the chain. All other tiles will operate
at the rate of the incoming packets, whatever this will be.

Last packet in the station chain will format the header for the CSP, and requires some extra informations
to fill up the header. These are specified using the registers set in table 7.

Register ID Bit width R/W Description
ref_epoch_lo 32 RW Reference epoch (LSB) in Unix time (seconds)
ref_epoch_hi 8 RW Upper 8 bits of reference epoch
start_time 32 RW Start time for frame 0 wrt. ref. epoch (ns)
frame_id

.antenna_index 8 RW Number of antennas in station - 1

.station_id 16 RW Station and substation code

.sub_array_id 8 RW Subarray ID
freq_beam_tab 64×X W Table for start frequency and beam index
csp_scaling 3 RW Output rescaling factor (bits discarded)

Table 7: Registers for the station beamformer

Absolute time is specified by a 40 bit reference epoch, in seconds (Unix time format) and a 32 bit offset,
in nanoseconds. The sum of these two times correspond to the reference time for the first sample in packet
0. Packet number is multiplied by 1080 ns inside the SPEAD formatting module and added to the start
time of each packet.



Frequency is computed from a table of frequency and beam indexes. Each packet is internally tagged
with the sequence number of the sample in the tile beamformer output. These are grouped in groups of 8,
corresponding to a contiguous block of frequency channels for the same beam. The corresponding frequency
is stored in a table, specified in the freq_beam_tab for each group of 8 channels. Each entry in this table
is 12 bits long, with the upper 3 bits specifying one of 8 beams and the lower 9 the frequency for the first
channel in the group (must be even).

Entries in the frame_id register are copied verbatim in the SPEAD header. csp_scaling register is used
to rescale the beamformed 16 bit sum to a 8 bit integer, depending on the number of antennas composing
the station.

Some registers, listed in table 8 are used for diagnostics and status reporting. tp_sel is used in conjunc-
tion with the hardware test point pins to monitor specific internal signals, as described in section 8.

core_timeout is used to specify the maximum time before the DDR is assumed not to have responded
to a read request, expressed in oversampled clock cycles. It is set in the firmware to a default value, and
usually should not be modified.

The error register contains some error counts and flags. It is reset by bit control.error_rst and should
always be zero. The frame error counter counts all frames affected by an error. Each flag is set if one error
of the specific type is detected.

Register ID Bit width R/W Description
core_timeout 16 RW Timeout for DDR memory access
error R Error count register

.frame_error 16 R Frame error count

.ram_fifo_read_error 1 R

.ram_fifo_write_error 1 R

.spead_fifo_read_error 1 R

.spead_fifo_write_error 1 R

.corner_fifo_read_error 1 R

.corner_fifo_write_error 1 R
tp_sel 8 RW Test point select

Table 8: Registers for the station beamformer

6.2 Software interface

The station beamformer is controlled by the Station Beamformer station_beamf plug-in, using the following
methods:

• set_first_last_tile(isFirst, isLast)

• defineChannelTable(region_array)

• define_spead_header(stationId, subarrayId, numAntennas, refEpoch=-1, startTime=0)

• set_epoch(epoch)

• set_csp_rounding(rounding)

• start(time=0, duration=-1)

• abort()

• current_frame()

• is_running()

• report_errors()

• status_check()

Timing and other magic numbers are set up at initialization.
Before integration start, method set_first_last_tile() must be specified for all tiles in the chain, and

the 4 methods specifying the SPEAD header parameters and CSP rounding must be called for the last tile.
Reference epoch can be set once using set_epoch(). In define_spead_header() the default value for the



epoch leaves the one already programmed. The start time must be specified for the first frame after JESD
interface initialization, i.e. for frame 0 in the numbering scheme returned by the current_frame() method.

defineChannelTable() accepts a 16× 3 table, with each line containing (in order) the starting channel,
the number of channels and the beam index. This is the same format required for the tile beamformer table.

Once the beamformer is set up, it is started using the start() method. Start and stop time are expressed
in frames/256, i.e. the same units returned by current_frame(). By default integration is started 13.27 ms
after the time returned by current_frame(), and lasts forever. In normal operation, it must be synchronized
among all tiles and FPGAs composing the station, and a stop time must be specified. The stop time
represents the first frame that is not processed.

If the beamformer is already running, the command is ignored. The is_running() method can be used
to test this condition, or to verify whether the integration has successfully completed. A running integration
can be stopped at any time by the abort() method. It immediately stops the generation of new packets by
the first tile, but not the propagation of existing partial packets in the beamforming chain.

Status of the error registers can be queried using the report_errors() method. It returns two values,
respectively for the frame error counter and for the error flag register. The status_check()method generates
logging information if the frame error counter has a nonzero content.

7 Wide band total power detector

Each input data stream from the JESD interface has a dedicated total power detector. This is used both to
actually measure the total power level on the 400 MHz input band, and to detect impulsive RFI.

The total power detector integrates the square of the raw ADC counts over a programmable number of
frames. The minimum integration time is 256 input frames (276.48 µs), and the maximum is about 18.12
seconds, with a resolution step of 256 frames. Once started, the total power detector performs contiguous
integrations until explicitly stopped. Start and stop is controlled by the bit tp_run in the control register.

The RFI detector operates by integrating the total power level over each frame (864 samples), and
performing a running average of two frames (fast integrator). At the same time a single pole IIR filter is
applied to the total power, producing an effective integration time of 220 samples (1.31 ms, corresponding
to a cutoff frequency of the low pass filter of 121 Hz). The result is normalized to 1024 samples, and is
therefore 1024/864 = 1.185 times higher than the value produced by the fast integrator. Without further
rescaling, the 18.5% margin is sufficient for the statistical fluctuations in the signal amplitude not to cause
spurious RFI flagging. As the input signal may vary for other reasons, the trigger threshold may be varied
programmatically.

The RFI detector always counts the number of affected frames (channelized samples) over the same
integration interval used by the total power integrator. Sample flagging is enabled independently for each
signal, and is disabled at startup. When flagging is enabled, the flag signal is sent to the channelizer, delayed
by the appropriate latency time, and applied to the affected channelized samples.

7.1 Hardware interface

When an integration is completed, the results are transferred to the tp_counts registers and the bit ready
in the status register is set. The total power accumulator register is 48 bits long, but in the interface the
result is represented by a 32 bit unsigned value. Even at the shortest integration time, the result may
exceed 32 bits, and the least significant bits contain only noise. It is possible to select the bits transferred
to the output register using the register field discard_bits= db. The actual number of least significant bits
discarded is b = 4db + 2, while the most significant bits that are not copied to the result are tested for an
overflow condition. If there is an overflow in one of the input channels, the corresponding bit in the ovfl

field of the status register is set.
The nominal input RMS level is 19 ADC units. For an input level above 35-40 ADC units the ADC will

produce a significant compression and nonlinear terms, and the analog chain will saturate completely around
60 ADC units. The minimum amplitude for meaningful operation is around 8 ADC units. The number of
discarded bits is therefore set in order not to produce an overflow with an input level of 60 ADC unit.
The minimum and maximum integration time for each value of db is reported in table 10. The maximum
rounding error due to the finite number of bits in the result is reported, as an increase to the radiometric
noise, and is referred to an input level of 8 ADC units. At the longest integration times this approaches
27%, but it must be noted that in this situation the 1/f noise is likely to be dominant with respect to the
pure radiometric noise (-45 dB).

The RFI detector flags a channelized frame each time the power averaged over two frames, exceeds by
a factor of 1.185 the power averaged over 220 samples. The signal however could vary for intrinsic reasons,



Register ID Bit width R/W Description
date_code 32 R Compile date (8 hex digits, YYYYMMDD)
control RW General control register, with subfields
.reset 1 RW Global reset
.tp_run 1 RW Global run/stop
.rfi_enable 16 RW RFI flagging enable
.clear_ready 1 RW Clear ready flag
.discard_bits 2 RW Scaling (number of bits to discard) in TP result

status R Status register
.ready 1 R Total power readout available
.ovfl 16 R Overflow flag (1 per input channel)

integration_time 16 RW Total power integration time (frames/256)
rfi_factor 16 RW Guard factor for RFI
tp_counts 16× 32 R Total power readouts
rfi 16× 32 R RFI affected frame counts

Table 9: Registers for the total power and RFI detector

db Bits Min Max Max Noise
dropped frames frames time incr.

0 2 1 21 6 ms 0.5%
1 6 22 345 95 ms 1.7%
2 10 346 552 1.53 s 6.8%
3 14 5524 65535 18.1 s 27%

Table 10: Integration time and excess quantization noise as a function of number of discarded bits

and therefore it is necessary to specify a different value. The rfi_factor= Rf multiplies the long term
integration value, with a nominal value of 2048, before the comparison. The threshold for considering
a particular frame affected by RFI is thus 1.185Rf/2048. This feature is not yet implemented, i.e. the
threshold is always set to 1.185, irrespective to the value specified in the rfi_factor register.

Each time the running mean for and input signal exceeds the threshold, a RFI event is generated for
that antenna, and counted in the corresponding RFI event register. The register counts the events over the
same integration period specified for the total power integration.

For each signal, if the corresponding bit in the rfi_enable field is set, the event causes the corresponding
channelized sample to be flagged as invalid. Flagging is destructive (the original sample value is lost) and
propagates to the corresponding beamformed sample. Even one flagged antenna in the station invalids the
whole station. Therefore if some antennas are not used in the beamforming, the corresponding rfi_enable

bit must be cleared.

7.2 Software interface

The total power plug-in has the following method. It is accessed with the symbolic name adc_power_meter.
The most useful implemented methods are the following:

• set_intTime(intTime)

• start_IntTime(intTime)

• start_TP(), stop_TP()

• enable_RFI(mask), disable_RFI()

• read_TpData()

• get_RmsAmplitude()

• read_RfiData()

Other methods are used internally, but are accessible to the user.



• initialise()

• wait_TpReady()

• wait_TpData()

In all methods the integration time is specified in seconds, and all amplitudes are reported either in ADC
units (amplitude) or units squared (power). Here below are presented more details about the methods listed:

• set_intTime(intTime) sets the integration time, without modifying the running status. If the inte-
gration is running the old integration time is not modified.

• start_IntTime(intTime) stops the current integration, if running, modifies the integration time and
restarts the integration with the newly specified time.

• start_TP() and stop_TP() respectively starts and stops the total power integrator. Synchronous start
is not supported yet.

• enable_RFI(mask) enables RFI flagging for the specified input channels. If RFI detects a signal
power above the threshold level in one of the enabled input signals, the corresponding channelized
samples are flagged. Masking is used not to generate RFI flagging for antennas that are not used in
the beamforming. disable_RFI() is equivalent to using a mask of all zeros, effectively disabling the
flagging operation.

• wait_TpData() waits for the total power data to become ready and returns them. Returns an empty
list if the total power integrator is not running, and total power data from a previous integration is
not available. Returns an empty list if the total power integrator is not running. get_RmsAmplitude()
operates in the same way, but returns the RMS amplitude instead of the power.

• read_RfiData() Returns the number of RFI affected frames in the previous integration period.

• initialise() is automatically called at startup. The integration time is set to 10 ms, the total power
integrator is started and RFI flagging is disabled.

• wait_TpReady() If the integrator is running, waits for data to become ready, returning True. Else
returns False.

• read_TpData() reads the total power data if these are available, returning a list with 16 floating point
elements, else returns an empty list.

8 Test points

Test Clock Signal
point domain
0 ADC PPS pulse
1 ADC syncronization pulse
2 ADC ADC reset (cross domain)
3 ADC jesd stream tvalid

4 ADC jesd stream tlast

5 DSP Channelizer stream tlast

6 DSP Tile beamformer tvalid
7 DSP Tile beamformer tlast
8 UDP DDR3 bus Request (to DDR)
9 UDP DDR3 bus Read/NWrite (to DDR)
10 UDP DDR3 bus Ready (from DDR)
11 UDP DDR3 bus Data Ready (from DDR)
12 DSP Station beamformer Test point 0
13 DSP Station beamformer Test point 1
14 ADC Tile beamformer Test point 0
15 ADC Tile beamformer Test point 1

Table 11: Signal processing ring test points



Each FPGA has two dedicated lines that are connected to a total of 4 posts on each TPM front panel.
These lines are used to directly monitor a number of internal signals, that are selected using dedicated
registers. As these lines are used only for debug purposes, there is no plug-in associated with them.

Test points are selected at a global level using register fpga<x>.regfile.tp_sel. Test point pins 0 and
1 are selected by bits 3–0 and 7–4 respectively, according to table 11. There are 16 test points at the global
level. Four of them connected to the test point outputs of the tile and station bamformer modules, that are
in turn selected using a module specific, internal test point register. Each test point pin can be associated
with any of the 16 internal test point signals. Test points are synchronized to the clock domain they belong
to. There are mainly three clock domains: the ADC domain, at 200 MHz, the oversampled DSP domain, at
237.04 MHz, and the Ethernet and I/O ring domain, at 156.25 MHz.

Stream tvalid and tlast allows to follow the packets as they are being processed by the various modules.
The tvalid for the input stream should become valid as soon as the JESD interface is initialized. The tlast
pulses should be aligned among all TPMs in the system. The DDR bus bits can be used to verify DDR
timing and bandwidth utilization.

Figure 6: Example of test point use, showing DDR control lines

An example of the test point use is shown in figure 6. The test points shown are relative to the DDR
bus. Signals ddr_data_ready and ddr-request are selected on FPGA1, and signals ddr_read_nwrite and
ddr_ready on FPGA 2. Horizontal scale is 500 ns/division. As the two FPGAs are synchronized, these
signals are very similar, with FPGA2 slightly delayed (about 20 ns) with respect to FPGA 1. The plot
captures four memory read operations, with a memory write operation after the first read. An autorefresh
cycle is also visible on the ddr_ready line.

The plot shows that each memory burst (256 DDR accesses) lasts 160–200 ns, that the memory access
time is about 100–150 ns, and that the overall access efficiency is around 90% (900 ns for 1280 accesses at
1600 MHz).

8.1 Tile and station beamformers test points

Station and tile beamformers provide two test point signals each, selected with the same mechanism among
16 internal monitor points. Selection is performed using the same mechanism, specifying bits 3–0 and 7–4
respectively of the module tp_sel register.

Tile beamformer test points are listed in table 12.
The input bank selector switches as each time a new frame is received from the channelizer. Valid and

start/end of frame bits can be used to follow the packets being processed. The F2F bits can be used to
verify the correct working of the bus connecting the two FPGA, and its latency.

Station beamformer test points are listed in table 13.
DDR write and DDR read triggers are the pulses that start a DDR block write or read, respectively.

Read and write requests are the actual requests to the DDR, valid for the whole burst. The tvalid and
tlast signals monitor the response form the DDR to a read request.

The two FIFOs are used at the input of the station chain adder, respectively for the partial arriving
downstream and for the tile samples stored locally. FIFO full bits should always stay false. Empty bits are
false if some data is received in one of the two buffers.



Test Signal
point
0 Input bank select: square wave at half frame period
1 Negated reset
2 Memory strobe for block memory read
3 Ping pong status bit (output bank select)
4 Region selector output start-of-packet
5 Region selector output tvalid
6 Calibration block input tlast
7 Calibration block input tvalid
8 Calibration block output start-of-packet
9 Calibration block output tlast
10 Calibration block output tvalid
11 F2F bus input bit 48 (tvalid)
12 F2F bus input bit 49 (tlast)
13 F2F bus output bit 48
14 F2F bus output bit 49
15 Output bus valid signal

Table 12: Tile beamformer test points

The core state machine is normally in the Idle state (bits 13-12 = 00). On the arrival of a SPEAD packet
it goes to state Wait DDR, then to state Summing when the corresponding packet is read from DDR. It
cycles through these states until the whole packet has been processed, briefly passes through state Done and
returns to Idle.



Test Submodule Signal
point
0 DDR write trigger
1 DDR start read trigger
2 DDR read bus tvalid
3 DDR read bus tlast
4 Frame counter bit 0
5 Frame counter bit 1
6 Read request
7 Write request
8 Core SPEAD input FIFO full
9 Core SPEAD input FIFO empty
10 Core DDR input FIFO full
11 Core DDR input FIFO empty

13-12 Core state machine: 1=Wait DDR, 2=Summing, 3=Done, 0=Others

Table 13: Station beamformer test points

List of acronyms

ADC: Analog to Digital Converter

AXI4: Advanced eXtensible Interface 4: standard digital bus protocol

ADU: Analog to Digital Unit: the amplitude of one ADC quantization step

CSP: Central Signal Processor

DDR: Double Data Rate: Implementations of DRAM using both clock edges for data transfer. DDR3 and
DDR4 versions of the standard are used in the design

DDS: Direct Digital Synthesizer (oscillator)

DSP: Digital Signal Processing

ECP: Engineering Change Proposal

EMC: Electromagnetic Compatibility

EMI: Electromagnetic Interface

ENOB: Equivalent number of bits

F2F: FPGA to FPGA (bus, interconnection)

FFT: Fast Fourier Transformation

FIFO: First-in first-out buffer

FPGA: Field Programmable Gate Array

GbE: Giga Bit Ethernet

HDL: High Level Design Language

ICD: Interface Control Document

IICD: Internal Interface Control Document

I/O: Input/Output

IP: Internet Protocol

iTPM: Italian Tile Processing Module

JESD204: JEDEC Standard 204 for ADC serial interface

LFAA: Low Frequency Aperture Array Element or Consortium

LSB: Least significant bit

MATLAB: MATLAB simulation language and application

M&C: Monitor and Control



MSB: Most significant bit

PPS: Pulse per second

RFI: Radio Frequency Interference

RMS: Root mean square

ROM: Read Only Memory

SDP: Science Data Processing

SDRAM: Syncronous Dynamic Random Access Memory: Standard for bursting, fast memory. DDR3 and
DDR4 implementations of SDRAM are used in the design

SKA: Square Kilometre Array

SKAO: SKA Organization (or office)

SPEAD: Standard Protocol for the Exchange of Astronomic Data

SW: Software

TBC: To be confirmed

TBD: To be decided

TPM: Tile Processing Module

UDP: User Datagram Protocol: standard Internet protocol

VHDL: VLSI High Level Design Language

WBS: Work Breakdown Structure

XML: eXtensible Markup Language
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