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Plan

• Grain models: ingredients

• What can we calculate to compare to
observations?

– Interstellar Extinction
– Interstellar Polarization
– Scattering Properties of Dust
– Heating/Cooling of Grains

and Infrared Emission
– Rotational Dynamics and

“Spinning Dust” Emission
– Magnetic Dipole Emission from

Magnetic Dust?

• Grain Destruction in the ISM

• Grain Evolution in ISM of Milky Way
and Other Galaxies

Some things I will not talk about:

• charging of interstellar grains

• role of grains in ionization bal-
ance

• heating by photoelectrons
from grains

• deuteration of PAHs

• physics of grain alignment

• evolution of dust in dense
clouds

• dynamics (and acceleration) of
charged grains in interstellar
shocks

I’m happy to discuss these or other
dust physics matters any time –
just stop by my office.
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Dust Model Ingredients

Dust in Diffuse Clouds (no ices present)

Essential Ingredients
• amorphous silicate material to ac-

count for 10µm and 18µm absorption

• Polycyclic aromatic hydrocarbon
(PAH) material to account for IR
emission features

• Additional carbonaceous material
with significant aliphatic fraction to
account for 3.4µm feature

• Other stuff – stardust SiC, diamond,
etc. – appears to have sufficiently low
abundance that it can be ignored at
the present stage of modeling.
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Extinction Curves

• Choose an observed extinction curve to reproduce

• specify components, e.g.,

– population of silicate grains
– population of carbonaceous grains

• Choose grain shape (e.g., oblate spheroid, axial ratio b/a)

• Fit extinction vs. λ by varying size distributions dnj/da
(e.g., j = silicate , carbonaceous)

• Fit polarization vs. λ by varying
fj(a) = degree of alignment for grains of composition j, size a

Also:

• Adjust size distribution of PAHs so that single-photon heating reproduces
observed IR emission.

• Satisfy abundance constraints.
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Abundance Constraints

Abundance in gas/solar abundance

Solid symbols = C, Mg, Si, Fe (major
grain constituents) (Draine 2011).

• Sightline to nearby star ζ Oph
(O9.5V, D = 112 ± 3pc)
has superb high-resolution
absorption-line spectroscopy.

• If ISM is assumed to have so-
lar abundances, then “deple-
tions” of elements like C, Mg,
Si, Fe indicate incorporation
into solids.

• Total “missing mass”/H mass
= 0.0091 ± 0.0006

• Challenge: to reproduce
observed extinction without
exceeding abundance con-
straints.
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Size Distribution of Interstellar Grains
• Observe extinction curve from∼ 2µm – 0.1µm

• Mathis et al. (1977) tried to reproduce aver-
age interstellar extinction curve using mixture
of graphite and silicate spheres.

• Using non-parametric size distribution with up-
per and lower cutoffs, amin and amax, they found
best-fit size distributions dn/da.

• Their best-fit size distributions were very close
to power-laws!!

• Therefore MRN proposed using power-laws

1

nH

dngra,sil
da

= Agra,sil a
p for amin < a < amax

p = −3.5

amin ≈ 0.005µm

amax ≈ 0.25µm

This is the famous “MRN” size distribution.

• dn/da ∝ a−3.5 has most of mass at large size
end, most of area at small size end.

• dn/da ∝ a−3.5 is similar to size distribution of

� p ≈ −3.25 for asteroids with 5 < D <

300 km (Bottke et al. 2005)

� steady-state coagulation/fragmentation
models (Dohnanyi 1969; Weidenschilling
1997; Tanaka et al. 1996, 2005)

• Problem: Because of PAHs, the MRN distri-
bution can no longer be considered applica-
ble to interstellar dust.

� Substantial mass in ultrasmall dust grains:
∼ 5% of total dust mass is in particles with
< 103 C atoms. This is much more than
MRN extended to very small sizes.

� PAHs contribute substantially to the UV ex-
tinction.

� Non-PAH extinction not well-fitted by
MRN distribution.
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Modeling Extinction

Extinction: observed and modeled Extinction contributed by silicate and
carbonaceous material in WD01 model.

• Dielectric functions for candidate ma-
terials are uncertain

• Calculation of Cext(λ) is

– easy if spheres are assumed
– not so easy for spheroids
– challenging for more complex

shapes

• Models are not unique.

• “Observed” extinction in IR (λ >
1µm) is not well-determined – WD01
and ZDA04 models differ in what they
adopt as “observed” IR extinction.

• In recent years there have been revi-
sions to the “observed” extinction in the
3–8µm region. Current models don’t
agree with observations in this region.
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Dust Mass Distribution

Mass distributions for different grain models:
(a) WD01=Weingartner & Draine (2001) (b) ZDA04=Zubko et al.

(2004); (c) DF09=Draine & Fraisse (2009).

figure from Draine (2011)

• Models not unique, but general
agreement on overall distribution
of grain mass.

• Most of grain mass at
0.05 < a < 0.5µm.

• “Typical” (half-mass) grain radius
∼0.1µm

• Size distribution is not a power-
law.

• Significant mass in a < 1nm parti-
cles required to explain PAH emis-
sion.

• Models not consistent with
claimed flux of a > 0.3µm
particles entering heliosphere.
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Regional Variations in Size Distribution

• Extinction curves are known to vary from one sightline to another.

• Denser regions tend to have

� “flatter” extinction curves, i.e., higher values of RV ≡ AV /E(B − V )

� increased RV is attributed to tilt in size distribution to decrease numbers of small particles, increase
numbers of larger particles.
� grain growth is presumably due partially to accretion of atoms from gas, but this is only a minor effect

(because unless ices can form, most depletable species are already depleted in diffuse clouds)
� grain growth must be due primarily to coagulation.

• timescale for dust grain to collide with another dust grain is relatively short:

τdd =
1

nH Σd (∆v)dd
= 1× 107 yr

(
30 cm−3

nH

)(
10−21 cm2/H

Σd

)(
1 km s−1

∆vdd

)
• dust-dust velocity differences ∆vdd ∼ 1 km s−1 are expected

� radiation pressure and “recoil” effects can cause grains to drift through gas with speeds that depend on
size and composition
� ordinary fluid turbulence will give grains random velocities
� MHD turbulence can pump energy into “orbital” motions of >∼ 0.1µm grains in diffuse clouds (Yan

et al 2004)

• It is likely that coagulation modifies the grain size distribution. Presumably balanced by shattering in
higher-velocity grain-grain collisions (Yan et al. 2004; Hirashita & Yan 2009; Hirashita et al. 2010)
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Some Uncertainties
• Separate populations of silicate and carbonaceous grains?

– It is natural for “stardust” to be segregated (silicate grains vs. carbon grains) but in-
terstellar grains may be heavily affected by coagulation processes.

– The 10µm silicate feature is polarized therefore silicate-containing grains are aligned
– The 3.4µm aliphatic C-H stretch shows no evidence of polarization

consistent with separate, non-aligned, population of carbonaceous grains.
– But 3.4µm feature is weak – few studies of polarization
– Degree to which grain materials are segregated remains uncertain.

• Grain geometry?
– Compact grains?
– Fluffy grains resulting from agglomeration?
– Models with compact grains can reproduce observations.

What about fluffy grains? We don’t know – needs to be studied.
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Grain Geometry: Uknown

• Are interstellar grains fairly smooth and compact?

Presolar onion-like graphite grain (diameter ∼5µm). Photo from S. Amari.

• Or are they typically loose aggregates of smaller particles, with a large “porosity”?

Two interplanetary dust particles collected from stratosphere (diameter ∼10µm).
Elemental compositions similar to primitive meteorites: silicates + carbonaceous

material.
Images courtesy E.K. Jessberger and Don Brownlee.
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How Can We Determine Grain Geometry?

• Direct capture?
– Stardust mission: (probably) destructive capture
– Future mission: need to figure out how to capture incoming particles

without destroying them...

• Try to reproduce extinction and polarization observations
– Compact grains: OK
– Fluffy grains – we don’t yet know
– Work in progress...

• Try to reproduce X-ray halos
– Compact grains: OK
– Fluffy grain models→ more concentrated X-ray halos

(Heng & Draine 2009). May be inconsistent with observations.
– Work in progress...
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Heating and Cooling of Grains: Infrared Emission
For given starlight radiation field uν, and grain of
given composition c and radius a, calculate the
probability distribution function dP/dE for internal
energy E:

� define N energy bins Ej (we use N = 500)

� calculate transition matrix Tji = probability per
unit time of transition i→ j.
upward transitions due to photon absorption
downward transitions due to photon emission

� Let Pj = probability that grain will be in bin j

� Then
d

dt
Pj =

∑
i 6=j

TjiPi −
∑
k 6=j

TkjPj

� Find steady state solution

0 =
∑
i6=j

TjiPi −
∑
k 6=j

TkjPj

with
∑

j Pj = 1.

� Repeat for many different sizes a.

Upward transition rates are calculated using absorp-
tion cross section Cabs(ν) and radiation field uν.

How to calculate downward transition rates

Tji j < i ?

See discussion in Draine & Li (2001).
A good approximation is to associate a temperature
Tj with each energy bin Ej:

Tj = T for which 〈E〉 = Ej.

Thermal approximation: assume that grain with
energy Ej has emission spectrum

jν = Cabs(ν)Bν(Tj)

where Bν(T ) = blackbody function.

Because energy bins have finite width, need to give
some care to calculation of Tij.

=⇒ (dP/dT )c,a
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A Day in the Life of 5 Interstellar Grains

• grain with 50 C atoms in local starlight (U = 1): ∼1 absorption/100 days
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Temperature Distribution Functions

from Draine & Li (2007)
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Temperatures of “Classical” Grains
For large grains,

(dP/dT )c,a =⇒ δ(T − Tss(c, a))

Steady-state temperature Tss(c, a) is solution to heating = cooling∫
dν Cabs(ν)uνc =

∫
dν Cabs(ν)Bν(Tss)

If Cabs ∝ νβ ∝ λ−β in IR, then∫
dν Cabs(ν)Bν(Tss) ∝ T (4+β)

ss

and
Tss ∝ u1/(4+β)?

If

Cabs ∝ a2 for starlight absorption (a >∼ 0.1µm)

Cabs ∝ a3 for IR emission (a <∼ 10µm)

then
Tss ∝ u1/(4+β)? a−1/(4+β)

Bigger grains are slightly cooler.

Typically β ≈ 2 =⇒ Tss ∝ u
1/6
? a−1/6
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Emission Spectra

Sum over compositions c, integrate over
size a to get emission spectrum:

jν =
∑
c

∫
da

(
dn

da

)
c

×∫
dT

(
dP

dT

)
c,a

Cabs(a, λ)Bν(T )

λ <∼ 15µm emission spectrum
(PAH features)

independent of U for U <∼ 104

emission following
single-photon heating events

from Draine & Li (2007)
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IR Emission: Models vs. Observations
(Aniano et al. 2012)

log
[
ΣL(TIR)(L�/kpc2)

]
qPAH
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Dust-to-Gas Ratio in NGC 6946 at MIPS 160 resolution
Σdust/ΣHI+H2 (Aniano et al. 2012)Σdust

ΣH I+H2

XCO = 4×1020 H2 cm−2/(K km s−1)

• Low dust/gas ratio within ∼2 kpc of center: XCO should be lower
near center (Meier & Turner 2004; Donovan Meyer et al. 2012)
• Mdust/MH ≈ 0.010± 0.004 over most of disk
• A few places with high Mdust/MH – bad data?
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←M31

SMC→
← LMC

galactic longitude (deg.)

How about Nearby Galaxies?
100µm IRAS/COBE Map of Sky (after zodi subtraction)

Image credit: D. Finkbeiner
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The Small Magellanic Cloud (SMC)

• Interstellar gas less enriched with heavy elements (C,N,O,...,Fe)
formed in massive stars
SMC metallicity ∼25% “solar”

• Composition of dust appears to differ from dust in the Milky Way.
2175Å “bump” is weaker
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Dust in the SMC: Excess 50–300 GHz Emission

• Photometry: Israel et al. (2010) and Planck
Collaboration et al. (2011)

• MH(SMC) ≈ 4.8× 108M�

• Z(SMC) ≈ 0.25Z�

• Mdust,max(SMC) ≈ 1.2× 106M�

• After subtracting
– synchrotron emission
– free-free (bremstrahhlung)
– chance upward fluctuation of CMB

Can dust model + starlight reproduce the
observed emission?

• Model with acceptable mass of dust, but severe
50–200 GHz shortfall.

• Dust in SMC is more emissive at mm wave-
lenths than MW dust... why?

• At long wavelengths (particle size � λ), it
is usually assumed that emission comes from
thermal fluctuations in the electric
dipole moment.

Perhaps this isn’t the only source
of emission from dust....
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Magnetic Dipole Emission from Magnetic Dust
(Draine & Lazarian 1999; Draine & Hensley 2012b)

• Suppose much of the Fe is in mag-
netic material (e.g., metallic Fe, mag-
netite Fe3O4, or maghemite γ–Fe2O3)

• Lowest energy state of metallic Fe:

– spins are parallel (magnetized),
– magnetization ~M is aligned with one

of the crystal axes

• Excited state: spins parallel, but oriented
away from crystal axis

• Oscillations in magnetization → mag-
netic dipole emission

• Finite temperature → thermal magnetic
dipole emission

hello
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Magnetic Dipole Absorption Cross Section for Fe Nanoparticles
(Draine & Hensley 2012b)

• Magnetization dynamics: use Gilbert equation
(not Landau-Lifshitz eq. or Bloch-Bloembergen eq.)

• For metallic Fe: ferromagnetic resonance frequency depends on particle shape.

• Absorption depends on uncertain “Gilbert damping parameter” αG.
αG ≈ 0.2 may be realistic.
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SMC Dust Models With Iron or Magnetite (Fe3O4) Nanoparticles
(Draine & Hensley 2012a)

•Mdust = 8.4× 105M� or 6.4× 105M� (both < Mdust,max = 1.2× 105M�)

• magnetic dipole emission dominates for ν <∼ 200 GHz

• spinning dust component:

– normal spectrum (peaking near 40 GHz)
– has ∼expected strength (scaled with PAH abundance in SMC)
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Rotational Dynamics: Spinning Dust
• Large population of PAHs needed to

produce observed IR emission features

• IR emission comes from vibrations
but PAHs will also be rotating

• Estimate rotational frequency as func-
tion of PAH size

• Processes that change angular momen-
tum:

– collisions with atoms or ions
– “plasma drag”: coupling to ions that

do not physically impact PAH
– absorption of starlight photons
– emission of IR photons
– radiation from spinning electric

dipole [for assumed dipole moment]

sub-thermal rotation: 〈Erot〉 < 1.5kTgas

• Integrate over PAH size distribution

Iν/NH (( Jy/ sr−1)/( cm−2))

Draine & Lazarian (1998)
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Rotational Dynamics: Spinning Dust
Recent Refinements

• Will spinning dust emission be polarized?
NO: pol < 1% at ν > 30 GHz
(Lazarian & Draine 2000)

• Factor of two correction to rotational excitation
by photon emission (Ali-Haı̈moud et al. 2009)

• Analytic solution to Fokker-Planck equation
(Ali-Haı̈moud et al. 2009)

• Polarized IR emission from PAHs in reflection
nebulae (Sironi & Draine 2009)

• Allow for rotation around non-principal axis
(Hoang et al. 2010; Silsbee et al. 2011)

• Include effects of high-∆J impacts with ions
(Hoang et al. 2010)

• Wobbling for general asymmetric grains
(moment-of-inertia tensor with 3 non-
degenerate eigenvalues) (Hoang et al. 2011)

• Include internal relaxation (coupling of vibra-
tional and rotational modes) with transient heat-
ing (Hoang et al. 2011)

Comparison with WMAP 5yr data

(Hoang et al. 2011)
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Grain Destruction in the ISM
Principal Mechanisms for

solid→ gas
in SN Blastwaves

• Sputtering (removal of single atoms
following impact of H or He ions)

• Vaporization in grain-grain collisions

• SN shock will destroy dust if
vs >∼ 250 km s−1.
Mv2s ≈ 2.7E (Sedov)

M =
2.7× 1051 ergs

(250 km s−1)2
= 2200M�

• 1 SN/50 years:

τdest =
MISM

2200M�/50 yr
= 1.6× 108 yr

Complications:

• additional (partial) destruction in
lower-velocity shocks

• ISM is inhomogeneous (but does mix
rapidly)

• SN are correlated

• τdest ≈ 4× 108 yr

• Problem revisited a number of times
(e.g., Barlow 1978; Draine & Salpeter
1979; Dwek & Scalo 1979; Jones
et al. 1994) with similar conclusions
(but see Jones & Nuth 2011, for dis-
senting view).
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Grain Destruction and Reformation in the ISM
Mass Budget for the MW ISM

Production of stardust
Injection of Gas and Stardust from Stellar Sources

gas dust Stellar Source
(M�/yr) (M�/yr)

0.33 0.0016 Planetary Nebulae (∼0.3/yr)
0.20 0.0010 RG, Red AGB, C star winds
0.06 <0.0001? OB, WR, other warm/hot star winds
0.27 0.0002? SNe (1/50 yr, ∼ 10−2M� dust/SN?)

0.001 ? if 0.5M� dust/SN
0.01 0.00001 Novae (100/yr, 10−7M� dust/nova?)
∼0.9 ∼0.003 All stellar sources

∼0.004 if 0.5M� dust/SN

Mdust,inj ≈ 0.0035M� yr−1

• ISM “lifetime”
MISM/(SFR− Ṁin − Ṁreturn) = 1.2× 1010 yr

• τSFR = MISM/SFR = 3.5× 109 yr

• τdest ≡ lifetime of dust against destruction
≈ 4× 108 yr

• dust formation ≈ removal+destruction
Ṁdust,inj = Mdust × (τ−1SFR + τ−1dest)

• Predicted mass of surviving stardust:
Mdust = Ṁdust,inj/(τ−1SFR + τ−1dest) =

1.3× 106M�

• But observe

Mdust ≈ 0.007×MISM = 5× 107M�

•Must be some other source of
dust!
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Implications for Grain Evolution in the ISM

• Stardust expected to account for only ∼3% of observed dust mass.

• Bulk of dust mass must be grown in the ISM.

• In dense regions, time scale for atom to collide with grain surface is short:

τacc =
1

nHσdust∆v
= 1× 107

(
30 cm−3

nH

)(
km s−1

∆v

)
yr

for σdust = 10−21 cm2/H = geometric cross section/H

• Challenge: understanding how to form separate populations of
carbonaceous material and amorphous silicates
Must be the result of UV photolysis (see discussion in Draine 2009)

• Dust in young galaxies at high z (e.g., J1148+5251 @ z = 6.42, with
Mdust/Mgas

>∼ 0.004) can be the result of injection of small amount of
stardust from SNe and high-mass stars, followed by growth in dense re-
gions of the ISM.
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Many Challenges Remain...

• The geometry of interstellar grains.

• The composition of interstellar dust – both “stardust” and the materials
grown in the ISM.

• The formation/destruction of PAHs

• The size distribution, and changes in the size distribution.

• The physical processes responsible for alignment of interstellar dust.

• The velocity distribution of interstellar dust in presence of MHD turbu-
lence.

• Opacities of interstellar grain materials, from X-ray to microwave.

• Charging of interstellar grains

• Heating of gas by photoelectrons from grains

• Chemistry on grain surfaces

• Your idea here..
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THANK YOU
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