THE LIGHT AND DARK SIDE OF GALAXY FORMATION

PIERO MADAU UNIVERSITY OF CALIFORNIA SANTA CRUZ

ROSSI LECTURES 2014

INTRODUCTION BASIC ELEMENTS OF GALAXY FORMATION LIES, DAMNED LIES, AND SIMULATIONS

PHYSICS OF THE EARLY UNIVERSE

The Cosmic Microwave Background as seen by Planck and WMAP

 $A_{\rm GW}\propto H\propto E_{\rm inf}^2\sim (10^{16}\,\text{GeV})^2$

JUST SIX NUMBERS (ΛCDM) $\Omega_{\Lambda} = 0.681$ $\Omega_{\rm CDM}=0.27$ $\Omega_b = 0.049$ $H_0 = 67 \,\mathrm{km/s/Mpc}$ $\sigma_8 = 0.835$ $n_s = 0.96$ $\tau_e = 0.09$

INFLATION: THE "BANG" OF THE "BIG BANG"

tensor (gravitational waves) $= 0.2 \pm 0.05$ scalar (density perturbations)

greater than onedegree scale

DARK MATTERS

Most of the universe can't even be bothered to interact with you.

S. Carroll

From both astrophysical and particle physics considerations, stable and heavy *Weakly Interacting Massive Particles (WIMPs)* that arise from extensions to the SM of particle physics are particularly compelling.

A WIND OF WIMPS

 $E_{\rm kin} = 0.5 \times (100 \,\text{GeV}) \times (220 \,\text{km/s})^2 = 27 \,\text{keV}$

SEEING THE INVISIBLE

Galactic Center produces *more 1–3* GeV *gamma-rays* than can be explained by known sources.

Excess emission is consistent with a *30–40* GeV *WIMP* annihilating into *quarks* with a thermally-averaged cross-section *‹v›=(1.4–2.0) x 10-26* cm3/s!

> The Characterization of the Gamma-Ray Signal from the Central Milky Way: A Compelling Case for Annihilating Dark Matter

> > Tansu Daylan,¹ Douglas P. Finkbeiner,^{1,2} Dan Hooper,^{3,4} Tim Linden,⁵ Stephen K. N. Portillo,² Nicholas L. Rodd,⁶ and Tracy R. Slatyer^{6,7}

PHYSICS OF GALAXY FORMATION

FIRST GALAXIES

COSMIC DROPOUTS

COSMIC HISTORY OF STAR FORMATION

Madau & Dickinson 2014

MBH ACCRETION HISTORY

UNIVERSE IN A BOX: COSMOLOGICAL SIMULATIONS

Time since Big Bang: 0.19 billion years

CF. WHEN I WAS AN UNDERGRAD IN ARCETRI…

NO KNOWN *NORMAL* GALAXIES AT HIGH-REDSHIFT.

RAPID PACE OF DISCOVERY Keck First Data & **HST** upgrade 0.12 **HST HDF UDF** Launch 0.10 Fraction of publications 0.08 0.06 0.04 0.02 matching "galaxy evolution" Articles in Al & Apl matching cosmological parameter 0.00 986 1982 1990 978 199 Year

Question: do more publications in a given field mean most key questions are being answered? Should new students move into less well-developed fields?

INTRODUCTION BASIC ELEMENTS OF GALAXY FORMATION LIES, DAMNED LIES, AND SIMULATIONS

FROM QUANTUM FOAM TO GALAXIES

A RECIPE FOR GALAXY FORMATION

STANDARD COSMOLOGICAL MODEL

HOMOGENOUS, ISOTROPIC, EXPANDING UNIVERSE

$$
ds^2=-c^2dt^2+a^2(t)\left[\frac{dr^2}{1-kr^2}+r^2d\Omega^2\right]
$$

HUBBLE'S LAW *k=0* ➩ *Universe is flat a source located at separation R*

 $R = a(t)r$ $v=\dot{R}=\dot{a}r=\left(\frac{\dot{a}}{a}\right)R=HR.$ $\frac{\Delta \nu}{\nu} = -\frac{v}{c} = -\frac{\dot{a}}{a} \frac{R}{c} = -\frac{\dot{a}}{a} \Delta t$ $\nu \propto a^{-1}$

$$
\lambda = (c/\nu) \propto a = \frac{1}{(1+z)}
$$

FRIEDMANN EQUATIONS IN A FLAT UNIVERSE

 $H^2 = \frac{8\pi G}{3} \rho = H_0^2 \left(\Omega_\mathrm{M} a^{-3} + \Omega_\Lambda + \Omega_\mathrm{R} a^{-4}\right)$ $\frac{\ddot{a}}{a}=-\frac{4\pi G}{3}(\rho+3p/c^2)=-\frac{H_0^2}{2}\left(\Omega_{\rm M} a^{-3}-\Omega_\Lambda+2\Omega_{\rm R} a^{-4}\right)$

The cosmological parameters describing the Universe at recombination can be summarized on a single sheet of paper. Yet the most detailed supercomputer simulation cannot fully describe the complex structures we see today.....Why?

GRAVITATIONAL INSTABILITY IN A NUTSHELL

Let ρ*(x)* be the density distribution of matter at location *x*

Let $\delta(x)$ be the corresponding overdensity field $\delta(\vec{x}) = \frac{\rho(\vec{x})}{\bar{\rho}} - 1$

NB: δ*(x)* is the outcome of some random process in the early Universe like *quantum fluctuations of the inflaton field!*

non-linear regime |δ*|*≿*1*

According to linear theory, the density field evolves as density field linearly

$$
\delta(\vec{x},t) = D(t)\delta_0(\vec{x}) \ll
$$

According to the spherical collapse model in a $\Omega_M = I$ Universe, regions with $\delta(x,t) > \delta_c = 1.696$ will have collapsed to produce dark matter halos by time *t*. QUESTION: which halos will collapse first?

|The perturbed density field can be written $\,\,\lambda=2\pi a/k\,$ as a sum of plane waves of different *wave numbers* (called *modes*) which evolve $\delta(\vec{x}) = \sum \delta_{\vec{k}} e^{i\vec{k}\cdot\vec{x}}$ independently in the linear regime

The variance of the density field can then be written as

Note: *P(k)* has units of volume!

$$
\sigma^2 = \langle \delta^2 \rangle = \frac{1}{(2\pi)^3} \int P(k) d^3 \vec{k} = \frac{1}{2\pi^2} \int P(k) k^2 dk
$$

P(k) is the power spectrum . Inflation predicts an initial power spectrum of the form

$$
P(k) \propto k^n \quad n \lesssim 1 \quad \text{Scale INVARIANT} \over \text{Planck} \rightarrow n = 0.96
$$

The index *n* governs the balance between large- and small-scale power in the Universe.

The meaning of different values of *n* can be seen by imagining the results of *smoothing* the density field by passing over it a box of some characteristic *comoving size R* and averaging the density field over the box.

This will filter out waves with *k*≿*1/R*, leaving a variance

$$
\langle \delta_R^2 \rangle \propto \int_0^{1/R} \widehat{ \langle k^n k^2 dk } \propto R^{-(n+3)}.
$$

Hence, in terms of a mass , we have

$$
M \propto R^3
$$

$$
\langle \delta_M^2 \rangle^{1/2} \propto M^{-(n+3)/6}
$$

NB: we do not observe the primordial *P(k)* but *P(k)T(k)*. In CDM, *P(k)* is suppressed on small scales during the radiation-dominated era, $P(k) \sim k^{n-4}$ Density Fluctuation Data Agree with ACDM

Mass scale M [Msolar]

LINEAR GROWTH OF DM PERTURBATIONS

static $H=0$ Universe \Leftrightarrow mode grows exponentially with time

 $\delta_+ \propto e^{t/t_c}$

flat, matter-dominated Universe *H=2/3t*

$$
\delta_+\propto a=1/(1+z)
$$

 \Rightarrow growth is algebraic instead of exponential!

flat, Λ-dominated Universe *H=const*

$$
\ddot{\delta}_k + 2H\dot{\delta}_k = 0 \rightarrow \delta_+ = \mathrm{const}
$$

perturbations are now frozen!

GALAXY FORMATION: A 2-STEP PROCESS

SPHERICAL COLLAPSE IN A Ω*M=1* **UNIVERSE**

Think of an overdensity as consisting of many individual, thin mass shells \Rightarrow ONION MODEL

Because of collisionless nature of the DM, the shell crosses itself and starts to oscillate ➩ VIOLENT RELAXATION/ VIRIALIZATION

 $2K+W=0$

STRUCTURE FORMATION: AN N-BODY SIMULATION OF LARGE-SCALE STRUCTURE IN A ΛCDM COSMOLOGY

note the formation of pancakes, filaments and halos, and how voids become more spherical with time….

TIMESCALES OF GALAXY FORMATION

HUBBLETIME	$t_H = H^{-1} = H_0^{-1} [\Omega_M (1+z)^3 + \Omega_{\Lambda}]^{-1/2}$	
FREE-FALL TIME	$t_H = \sqrt{3\pi/32G\rho}$	\n $\rho = \rho_b + \rho_{DM} \equiv \Delta \rho_{crit}$ \n
EXEC-FALL TIME	$t_{\text{ff}} = \sqrt{3\pi/32G\rho}$	\n $t_{\text{ff}} = 1.57 t_H/\sqrt{\Delta}$ \n
QOOLING TIME	$t_{\text{cool}} = \frac{3nk_B T}{2n_H^2 \Lambda(T)} \propto n^{-1}$	\n \Rightarrow denser gas cools faster
3 REGIMES	3 REGIMES	cooling is not important, gas in hydrostatic equilibrium
b) $t_{\text{ff}} < t_{\text{cool}} < t_{\text{H}}$	\n $\frac{\text{system evolves on cooling timescale. Gas contracts}}{\text{slowly as it cools.}}$ \n	

cooling is catastrophic, gas cannot respond to loss of pressure and falls to the center on the free-fall timescale. c)

COLD MODE ACCRETION

M_{VIR}<10¹² M_® LIKE IT COLD!

BARYONS MATTER: FEEDBACK

INTRODUCTION BASIC ELEMENTS OF GALAXY FORMATION LIES, DAMNED LIES, AND SIMULATIONS

COSMIC RELICS

*N***-BODY COSMOLOGICAL SIMULATIONS OF A GALAXY HALO**

- assume all Ω*M* is in cold WIMPs, and sample it with *N* particles.
- bad approximation in the center of a massive galaxy where baryons dominate, OK for ultra-faint dwarfs (*M/L~1000*).
- simple physics (just gravity) & good CPU scaling \Rightarrow high spatial and temporal resolution.
- no free parameters (ICs known from CMB and LSS)

➪ ACCURATE SOLUTION TO AN IDEALIZED PROBLEM

HIERARCHICAL N-BODY TREE CODES

OCTREE gravity calculation
 $O(N^2) \Rightarrow O(N \log N)$

Newton's equations of motion in co-moving coordinates

$$
\frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = \vec{v}
$$

$$
\frac{\mathrm{d}\vec{v}}{\mathrm{d}t} + 2H(a)\vec{v} = -\frac{1}{a^2}\vec{\nabla}\phi.
$$

Cosmology, the expansion of the universe

 $H(a) = \dot{a}/a$ (Hubble constant) $\frac{\ddot{a}}{a}=-\frac{4}{3}\pi G\rho_{b}(t)+\frac{\Lambda}{3}\ \ {\rm (2^{nd}\,\, Friedman\,\, equation)}$

Gravitational potential

$$
\nabla^2 \phi = 4\pi G \rho a^2 - \Lambda a^2 + 3a\ddot{a}
$$

$$
= 4\pi G (\rho - \rho_b) a^2
$$

ZOOMING-IN

STRUCTURE FORMATION: AN *N***-BODY SIMULATION OF THE ASSEMBLY OF A MILKY WAY HALO**

note the accretion of matter along filaments and the clumpiness of the final DM distribution…..

Stadel, Potter et. al. 2008

RESOLUTION, RESOLUTION, RESOLUTION

RESOLUTION, RESOLUTION, RESOLUTION

RESOLUTION, RESOLUTION, RESOLUTION

INCOMPLETELY PHASE-MIXED MATERIAL

DEBRIS FLOWS (SHELLS, SHEETS, PLUMES)

THE WIMP MIRACLE

William I:
$$
r_s = 180 \text{ pc}, \rho_s = 0.4 \text{ M}_{\odot} \text{ pc}^{-3}
$$

\n $m_{\chi} = 150 \text{ GeV}$ $d = 38 \text{ kpc}$
\n $L_{\text{ann}}^{\text{WI}} = \frac{\langle \sigma v \rangle}{m_{\chi}} \left(\frac{4\pi}{3}\right) r_s^3 \rho_s^2 \sim 10^{35} \text{ ergs s}^{-1}$

WIMP ANNIHILATION SIGNAL

THE SMALL-SCALE CRISIS

Invisible galaxy said likely made of dark matter

MISSING SATELLITE PROBLEM

Mass (solar masses)

WHY DO WE CARE ABOUT DWARFS?

• DGs are cosmic DM laboratories: probe the power spectrum on small scales and offer a unique test of the particle nature of the dark matter.

• DGs are the champions of the epoch of first light: first generation of cosmic structures to go nonlinear \Rightarrow believed to be responsible for the reionization and chemical enrichment of the early universe.

ERIS SIMULATION OF A MW GALAXY

$M_{\rm vir}=8\times10^{11}\,{\rm M}_\odot$ $N = 13M (DM) + 13M (SPH)$

Pillepich et al 2014

Guedes et al 2011

• DGs are the building blocks of massive galaxies: their remnants provide a powerful test of the hierarchical assembly of cosmic structures.

$$
z_i = 0.77, M_{\text{vir}} = 9 \times 10^9 \text{ M}_{\odot}
$$
\n
$$
M_* = 2.6 \times 10^8 \text{ M}_{\odot}
$$
\n
$$
z = 0, M_{\text{vir}} = 3.4 \times 10^7 \text{ M}_{\odot}
$$
\n
$$
M_* = 2.2 \times 10^7 \text{ M}_{\odot}
$$
\n
$$
= 0.77, M_{\text{vir}} = 3.4 \times 10^7 \text{ M}_{\odot}
$$
\n
$$
= 0.77, M_{\text{vir}} = 3.4 \times 10^7 \text{ M}_{\odot}
$$
\n
$$
= 0.77, M_{\text{vir}} = 3.4 \times 10^7 \text{ M}_{\odot}
$$
\n
$$
= 0.77, M_{\text{vir}} = 3.4 \times 10^7 \text{ M}_{\odot}
$$
\n
$$
= 0.77, M_{\text{vir}} = 3.4 \times 10^7 \text{ M}_{\odot}
$$
\n
$$
= 0.77, M_{\text{vir}} = 3.4 \times 10^7 \text{ M}_{\odot}
$$
\n
$$
= 0.77, M_{\text{vir}} = 3.4 \times 10^7 \text{ M}_{\odot}
$$
\n
$$
= 0.77, M_{\text{vir}} = 3.4 \times 10^7 \text{ M}_{\odot}
$$
\n
$$
= 0.77, M_{\text{vir}} = 3.4 \times 10^7 \text{ M}_{\odot}
$$

TRACTIVE SOLUTION TO THE **G PROBLEM: BARYONS**

● Until recently any direct effect of the baryonic component on the DM was limited to a minor *adiabatic* correction, i.e. baryonic processes modulate the SFR without changing the underlying DM scaffolding.

● This picture has recently been subverted. Spectroscopic observations have revealed the ubiquity of *galaxyscale outflows*, even in dwarfs with *SFR«1M*⦿*/yr*. It has been realized that these processes have a *non-adiabatic* impact on the host DM halo.

CAN SUPERNOVA FEEDBACK FIX DM DENSITIES? EXPLAIN LOW SFES?

- *●* Capturing the baryonic and feedback processes that regulate the *metabolism* of DGs requires cosmological hydro simulations of high dynamic range.
- *●* Gas in such *low-Z* systems does not settle into a *thin, cold disk,* and their shallow potential wells make the ISM more prone to disruption from energetic SNe.
- *●* Star formation may proceed in a *bursty* manner that is different from that of larger mass spirals.
- *●* Stellar feedback drives *galactic outflows* that modulate the stellar buildup, lower *fgas* and alter the chemical evolution of DGs .

FEEDBACK

● Each SN deposits metals and $E\simeq 10^{51}$ ergs (Kroupa IMF $\left|\right|$ SN/87 ₁₀ M_{\odot}) into the nearest neighbors (1-2 R_S [pc] SPH particles). (log scale)

● SN feedback: heated gas has its cooling shut off \Rightarrow galactic ouflows

*t*blast*=106.85 E510.32 n-0.16P04-0.2* yr *R*blast=*101.74 E510.32 n0.34P04-0.7* pc $(t_{\rm cool} \sim T^{1/2}$ above 1 keV)

minimalistic feedback: cf. explicit wind particles/mass+metal loading/ 2-phase subgrid ISM/radiation pressure on dust/AGN feedback/ hydro decoupling (e.g. Vogelsberger et al. 2013).

A GROUP OF SEVEN DWARFS

- *●* LCDM cosmological SPH simulation run to *z=0*
- \bullet mass $m_{\rm DM} = 1.6 \times 10^4 \,\rm M_{\odot}$ l resolution $\,m_* = 1000 \, {\rm M}_{\odot}$

- *●* gravitational softening=86 ppc
- *●* metal-dependent gas cooling
- *●* UVB heating & photoionization

● high SF gas density threshold of 100 cm⁻³ \Rightarrow SF is clustered
 $d\rho_*/dt = 0.1 \times (\rho_{\rm gas}/t_{\rm dyn}) \propto \rho_{\rm gas}^{3/2}$

$$
\lambda_{\rm J,th} = (\pi c_s^2/G\rho)^{1/2} \approx 50 T_3^{1/2}\, {\rm pc}
$$

GRID

$\rho(\mathbf{r}) = \sum_{j=1}^{N} m_j W(|\mathbf{r}-\mathbf{r}_j|, h)$ KEY FEATURES OF SPH

• An exact solution to the continuity equation.

● RESOLUTION follows mass, particle nature gives natural compatibility with N-body codes.

● ZERO intrinsic dissipation/numerical diffusion. Need to add some explicitly to: 1) capture shocks; 2) avoid suppression of fluid mixing.

● EXACT conservation of mass, momentum, angular momentum, entropy.

● ADVECTION done perfectly. Galilean invariance -- important in cosmological simulations where highly supersonic bulk flows are common.

● Does not CRASH ("screw-ups" indicated by noise rather than code crash).

● Gas particles have "NAMES".

TURBULENT DIFFUSION OF METALS AND THERMAL ENERGY

$$
(dc/dt)_D = (1/\rho)\nabla \cdot (D\nabla c)
$$

$$
D = 0.05 \,\rho |S_{ij}| h^2
$$

*Sij=*trace-free velocity shear tensor \Rightarrow no diffusion for compressive or purely rotating flow (Shen et al 2010)

WORD OF CAUTION: MW HALO GAS DOES NOT **MIX WELL!**

Tobias Westmeler, CSIRO Australia Telescope National Facility Based on the Leiden/Argentine/Bonn Survey (Kalberla et al. 2005, A&A 440, 775) and the Milky Way model of P. Kalberla (Kalberla et al. 2007, A&A, in press).

THE STELLAR MASS FRACTION OF DGS AT Z=0.

GASOLINE VS. ENZO

 $\dot{\rho}_{*} \propto \rho_{\rm gas}^{3/2}$ vs. $\dot{\rho}_{*} \propto f_{\rm H2} \rho_{\rm gas}^{3/2}$

Average ANGST dIrr formed bulk of its stars prior to *z=1,* exhibits ancient star formation (>10 Gyr ago) and lower levels of activity over the last 6 Gyr.

Low star formation efficiencies *are not the result of blowing away* all the baryons. Baryons are retained *but are unable to make stars* because of the more realistic description of where stars form (in high density clouds) and how feedback regulates the thermodynamics of the ISM.

METAL POOR

Stellar metallicity *V-*band luminosity relation for Milky Way's dSphs (Kirby et al. 2011).

The stellar mass-gas phase metallicity relation of DGs. Fraction of all the metals ever produced retained increases with decreasing stellar mass $= 10\%$ —90% for Bashful-Dopey.

CORED PROFILE

$$
\rho_{\rm DM}=\frac{\rho_0}{1+(R/R_c)^2}
$$

 $R_c = 1.8 \,\text{kpc}$ $= 2.1 \,\mathrm{kpc}$

BURSTY STAR FORMATION & POTENTIAL FLUCTUATIONS

The bursty star formation histories of DGs. Bottom left panel: fluctuating baryonic (gas+stars) central masses of the two simulated DGs.

THE END