4. THE MESSAGE FROM COMETS AND METEORITES

4.Comets & meteorites

- 1. Water and organics in comets
- 2. Water and organics in meteorites
- 3. Wrap-up: the threads

NOTE: This is NOT a review
=> references illustrative and NOT exhaustive

PREFACE

Comets: bodies of a few km, formed by rocks and ice.

Asteroids: bodies of a few km, which orbit around the Sun, formed mainly by rocks.

Meteoroids: small bodies (<km), which orbit around the Sun, formed mainly by rocks.

Meteors: meteoroids that penetrate into the terrestrial atmopshere.

Meteorites: meteoroids that arrive to the ground.

Parent body: comet or asteroid which the meteoroid or asteroid comes from.

4.Comets & meteorites

4.1 Comets

4.1 WATER AND ORGANICS IN COMETS

		WATER IN	C(DMETS
4.Comets	WATER IS T MOST ABUN => ICED WA => WHEN W	HE MAJOR VOLATI IDANT GAS PHASE TER SUBLIMATED / /AS THIS WATER F(LE CO MOLE AT THI DRMEE	MPONENT AND THE CULE IN COMETS E SUN APPROACH O? THE HDO/H2O CLUE
& meteorites				
	Comet	D/H	Туре	HERSCHEL OBSERVATIONS
	Halley	$(3.1 \pm 0.5) \times 10^{-4}$	OCC	H ₂ ¹⁸ O "wa
4.1 Comets	Hyakutake	$(2.9 \pm 1.0) \times 10^{-4}$	OCC	
	Hale-Bopp	$(3.3 \pm 0.8) imes 10^{-4}$	OCC	
	2002 T7	$(2.5 \pm 0.7) imes 10^{-4}$	OCC	£ 50
OSUG	Tuttle	$(4.1 \pm 1.5) \times 10^{-4}$	OCC	ateus :
Criservature des Sciences de l'Draves de Censolae	Ikeya-Zhang	$\leq 2.5 imes 10^{-4}$	OCC	a lathell soon blog a blog on the he
	2009 P1	$(2.06 \pm 0.22) imes 10^{-4}$	OCC	and all and a support of a
C.Ceccarelli	2001 Q4	$(4.6 \pm 1.4) imes 10^{-4}$	OCC	-5 0 5
	Hartley 2	$(1.61 \pm 0.24) imes 10^{-4}$	JFC	Velocity (km s ⁻)
IPAG	45P	$\leq 2.0 imes 10^{-4}$	JFC	Hartogn et al. 2011
	Tchouri	(5.3 <u>+</u> 0.7) x 10 ⁻⁴	JFC	
SCIENCES TECHNOLOGIE SANTE	Ceccarelli et al. 20	14, PP6; Altwegg et al. 2015		

WATER IN COMETS

OBSERVATION OF ORGANICS ARE VERY DIFFICULT AND ARE LIMITED TO A FEW COMETS SO FAR

4.Comets & meteorites

4.1 Comets

4.Comets & meteorites

4.1 Comets

THE MOST ABUNDANT MOLECULES, AFTER WATER, ARE CO AND CO₂, FOLLOWED BY CH₃OH, H₂CO, CH₄, NH₃ et H₂S => THE COMPOSITION OF THE ICES FORMED DURING THE PRESTELLAR CORE PHASE

PLUS SEVERAL ORGANIC MOLECULES -HCOOH, HCOOCH₃, NH₂CHO,HOCH2CH2OH... ALL MOLECULES PRESENT IN THE HOT CORINOS

> CHEMISTRY IS UNIVERSAL

CHEMISTRY IS

UNIVERSAL

MOLECULES PRESENT IN COMETS AND HOT CORINOS

organic compounds described in the text. The VIRTIS spectrum is rescaled in arbitrary units to compare the X-H stretch region with ethanol and ethanoic (acetic) acid spectra (32), a cometary tholins (obtained after ion irradiation of a mixture of 80% H₂O, 16% CH₃OH, 3.2% CO₂, and 0.8% C₂H₆) (33), and a refractory residue (labeled "Exp Or1") obtained after UV irradiation of a mixture of H₂O:CH₃OH:NH₃:CO:CO₂ in the ratio 2:1:1:11 (34).

CHEMISTRY IS UNIVERSAL

4.Comets

meteorites

4.1 Comets

OSUG

C.Ceccarelli

IPAG

nstitut de Planétologie et d'Astrophysique de Grenoble

INIVERSITE DSEPH FOURI

ß

SURFACE OF TCHOURI COVERED OF REFRACTORY ORGANICS

GLYCINE IN COMETS

2

1 km

CHEMISTRY IS

UNIVERSAL

4.1 Comets

STARDUST MISSION BROUGHT BACK MATERIAL ANALYSED IN THE TERRESTRIAL LABORATORIES => DETECTION OF GLYCINE

4.Comets & meteorites

4.2 Meteorites

4.2 WATER AND ORGANICS IN METEORITES

THE ORIGIN OF METEORITES

4.Comets & meteorites

4.2 Meteorites

MAJOR RESERVOIR: THE ASTEROID BELT BETWEEN MARS AND JUPITER (2.5-3 AU). MINOR RESERVOIRS: MOON, MARS, ASTEROIDES CROSSING THE EARTH ORBIT, FRAGMENTS OF COMETS

ORIGIN OF IOM

Remusat et al. 2005, Kwok et al. 2004

DEUTERATION OF IOM

MOLECULAR STRUCTURE OF SOM

AMINO ACIDS IN SOM

4.Comets £ meteorites 4.2 **Meteorites** OSUG nces de l'Univer de Grenoble C.Ceccarelli

IPAG

JNIVERSITE 24

Institut de Planétologie et d'Astrophysique de Grenoble credit Pizzarello

PP6:

2014,

al.

Ceccarelli et

AMINO ACID		CM2 (δD or D/H in 10 ⁻⁴)	CR2 (δD or D/H in 10-4)
	Linear alkyl	chain compounds	
glycine	, COOH	366-399 or 2.12-2.17	868-1070 or 2.89-3.21
DL alanine	NH2	360-765 or 2.11-2.74	1159-1693 or 3.35-4.17
DL-2-a. butyric		1091-1634 or 3.24-4.08	1920-3409 or 4.53-6.63
norvaline		1505 or 3.88	nd
	Branched	chain compounds	
2-a. isobutyric	H2 NH2	2362-3097 or 5.21-6.35	4303-7257 or 8.22-12.80
isovaline	ACOOH	2081-3419 or 4.78-6.85	3813-7050 or 7.46-12.48
DL-valine	∕~COOH	1216-2432 or 3.43-5.32	2086-3307 or 4.78-6.68
2-a. 2,3 methylbutyric	ALCOOH NH₂	3318-3604 or 6.69-7.14	nd
DL-2methylnorvaline	∼+ cooh NH₂	2686-3021 or 5.71-6.23	nd
DL-allo isoleucine		2206-2496 or 4.97-5.42	nd
L-leucine		1792-1846 or 4.33-4.41	nd
	N-substit	uted amino acids	
Sarcosine	-соон н₃с-мн	1274-1400 or 3.52-3.72	nd
DL-N-methylalanine	тас-ин	1224-1310 or 3.44-3.58	nd
N-methyl-2am. isobutyric	+зс-ин	3431-3461 or 6.87-6.91	nd

LARGE D/H VALUES => EXTRATERRESTRIAL ORIGIN

AMINO ACIDS DEUTERATION

4.Comets & meteorites credit Pizzarello

PP6:

2014,

al.

Ceccarelli et

4.2 Meteorites

AMINO ACID		CM2 (δD or D/H in 10⁻⁴)	CR2 (δD or D/H in 10-4)			
Linear alkyl chain compounds						
glycine	NH ₂	366-399 or 2.12-2.17	868-1070 or 2.89-3.21			
DL alanine		360-765 or 2.11-2.74	1159-1693 or 3.35-4.17			
DL-2-a. butyric		1091-1634 or 3.24-4.08	1920-3409 or 4.53-6.63			
norvaline	∼~ COOH NH₂	1505 or 3.88	nd			
Branched chain compounds						
2-a. isobutyric		2362-3097 or 5.21-6.35	4303-7257 or 8.22-12.80			
isovaline	ALCOOH	2081-3419 or 4.78-6.85	3813-7050 or 7.46-12.48			
DL-valine	∕~COOH	1216-2432 or 3.43-5.32	2086-3307 or 4.78-6.68			
2-a. 2,3 methylbutyric	ALCOOH NH₂	3318-3604 or 6.69-7.14	nd			
DL-2methylnorvaline	∼+COOH NH₂	2686-3021 or 5.71-6.23	nd			
DL-allo isoleucine		2206-2496 or 4.97-5.42	nd			
L-leucine		1792-1846 or 4.33-4.41	nd			
N-substituted amino acids						
Sarcosine	_соон н₃с-мн	1274-1400 or 3.52-3.72	nd			
DL-N-methylalanine	үсоон н₃с-ин	1224-1310 or 3.44-3.58	nd			
N-methyl-2am. isobutyric	тсоон н₃с-ин	3431-3461 or 6.87-6.91	nd			

LARGEST D/H VALUES IN BRANCHED COMPONENTS

AMINO ACIDS ORIGIN

4.Comets ß meteorites 4.2 **Meteorites** OSUG C.Ceccarelli IPAG stitut de Planétologi d'Astrophysiau

credit Pizzarello

PP6:

2014,

al.

et

Ceccarelli

PRECURSOR MOLECULES AND SYNTHESIS PATHWAYS STILL UNDER DEBATE

STRECKER-TYPE SYNTHESIS: ONE OF AND THE FIRST DISCUSSED SYNTHESIS PATH

IN PRESENCE OF LIQUID WATER (AQUEOUS ALTERATION OCCURRED ON THE PARENT BODY)

BUT SOME EVIDENCES POINT TO ACETALDEHYDE AS A PRECURSOR

=> NOT EVERYTHING IS UNDERSTOOD YET

4.Comets
£
meteorites

WATER IS THE MOST ABUNDANT MOLECULE PASSED FROM ONE PHASE TO THE OTHER OF THE SOLAR SYSTEM FORMATION PROCESS => BECAUSE IT IS FROZEN INTO THE GRAIN MANTLES

4.3 Wrap-up

ORGANICS ARE ALSO PASSED: THEY UNDERGO SUBSTANTIAL CHANGES FROM THE PRESTELLAR CORE PHASE TO THE COMETS AND METEORITS => HOW AND WHY IS TOTALLY UNCLEAR, BUT FROZEN ORGANICS ARE CLEARLY A WAY

ß

