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Mass

Highly non-linear relationships among stellar parameters.
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The classification of
certain stars as field
or cluster stars can
cause multiple
modes in the
distributions of other
parameters.
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Simulating from the Posterior

@ We can simulate or sample from a distribution to learn
about its contours.

@ With the sample alone, we can learn about the posterior.
@ Here, Y ~ Poisson(Ag + Ag) and Y ~ Poisson(cAg).
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Using Simulation to Evaluate Integrals

Suppose we want to compute

/= / 9(0)K(6)db,

where f() is a probability density function.
If we have a sample

0 .00 ~ £(6),

we can estimate / with

. 1
/n = E Zg(g(f)),
=1

In this way we can compute means, variances, and the
probabilities of intervals.
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We Need to Obtain a Sample

Our primary goal:

Develop methods to obtain a sample from a
distribution

@ The sample may be independent or dependent.
@ Markov chains can be used to obtain a dependent sample.

@ In a Bayesian context, we typically aim to sample the
posterior distribution.

We first discuss independent methods:
Rejection Sampling & The Grid Method
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Rejection Sampling

Suppose we cannot sample f(#) directly, but can find g(6) with
f(0) < Mg(0)

for some M.
@ Sample § ~ g(6).
@ Sample u ~ Unif(0,1).
Q If

u< N’;g?@) i.e., if uMg(f) < £(f)

accept §: 6() = 0.
Otherwise reject 6 and return to step 1.

How do we compute M?
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Rejection Sampling

Consider the distribution:

f(theta)

0.00 0.05 0.10 0.15 0.20 0.25

theta

We must bound f(6) with some unnormalized density, Mg(6).
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@ Imagine that we sample uniformly in the red rectangle:
6 ~ g(0) and y = uMg(0)
@ Accept samples that fall below the dashed density function.

How can we reduce the wait for acceptance??
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How can we reduce the wait for acceptance??

Improve g(0) as an approximation to f(0)!!
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The Grid Method

The Grid method is a brute force / last resort method to sample
from a density:

f(theta)
0.00 0.05 0.10 0.15 0.20 0.25

theta
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The Grid Method

@ Evaluate the density on a grid.

© Compute the areas of the resulting trapezoids.

© Sample from a multinomial distribution with probabilities
proportional to the areas.

f(theta)

0.00 0.05 0.10 0.15 0.20 0.25

theta

How can we improve the approximation??
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The Grid Method
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How can we improve the approximation??
Use a finer grid!!

Limitations?
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What is a Markov Chain

Definition
A Markov chain is a sequence of random variables,

9@ oM 9 .

such that

p(g(f)|9(f—1)’ 9(1—2)7 o ,0(0)) — p(g(f)|9(f—1))'

A Markov chain is generally constructed via
o) = (a1 ylt=1)

with UM, U@ . independent.
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What is a Stationary Distribution?

Definition
A stationary distribution is any distribution f(x) such that

f(o) = /p(g(t)|9(t1))f(9(t1))d9(f1)

If we
@ have a sample from the stationary dist'n and
© update the Markov chain,
then the next iterate also follows the stationary dist'n.

In practice we cannot obtain even one sample
for the stationary dist’n.
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What does a Markov Chain at Stationarity Deliver?

Under regularity conditions, the density at iteration t,

f0(9]60®) — £(#) and l}nj h(0) — Ef[h(0)]
t=1

@ The Markov chain converges to its stationary distribution.

o After sufficient burn-in, we treat {60, t = Ny,... N} as a
correlated sample from the stationary distribution.

@ This is an approximation: Use MCMC samples with care!
@ Convergence diagnostics are critical.

We aim to find a Markov Chain with Stationary
Dist’n equal to the Target Dist’n.
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The Metropolis Sampler

Draw 99 from some starting distribution.

Fort=1,2,3,...
Sample: 6* from J;(6*|0(=1)

Compute: r = p(’;((?jl{')y)

Set- g0 o* with probability min(r, 1)
' 164" otherwise

Note
@ J; must be symmetric: J;(0*|0(=1)) = Jy(41=1)|6%).
o If p(6*|y) > p(6*~y), jump!
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The Random Walk Jumping Rule

Typical choices of J;(6*|6(=")) include
@ Unif (4(=1) — k,0(=1) 4 k)
@ Normal (90— ki)
[+ tdf(e(t_ﬂ,k/)
J; may change, but may not depend on the history of the chain.

f(theta)

0.00 0.05 0.10 0.15 0.20 0.25

How should we choose k? Replace / with M? How?
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An Example

A simplified model for high-energy spectral analysis.

@ Model:
Consider a perfect detector:

@ 1000 energy bins, equally spaced from 0.3keV to 7.0keV,
@ Y, ~ Poisson (aEfﬁ) , with 0 = («, 8),

@ E; is the energy, and

Q (a,8) "% Unif(0,100).

@ The Sampler:
We use a Gaussian Jumping Rule,

e centered at the current sample, (9
e with standard deviations equal 0.08 and correlation zero.
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Simulated Data

2288 counts were simulated with o = 5.0 and 5 = 1.69.

red curve——expected counts

counts
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Markov Chain Trace Plots

Time Series Plot for Metropolis Draws
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Chains “stick” at a particular draw when proposals are rejected.
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The Joint Posterior Distribution

Basic MCMC Jumping Rules

Scatter Plot of Posterior Distribution
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Marginal Posterior Dist'n of the Normalization
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The Metropolis-Hastings Sampler

A more general Jumping rule:

Draw 99 from some starting distribution.

Fort=1,2,3,...
Sample: 6* from J;(6*6(-1)

R T YA )
COMPULE: 1= BGr=1ly) (o™ ]o)

9(t=1)  otherwise

Set: 60 {9* with probability min(, 1)

Note
@ J; may be any jumping rule, it needn’t be symmetric.
@ The updated r corrects for bias in the jumping rule.
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The Independence Sampler

Use an approximation to the posterior as the jumping rule:

Ji = Normaly(MAP estimate, Curvature-based Variance Matrix).

MAP estimate = argmax,p(6|y)

2 —1

, 0
Variance ~ ~ 5090 log p(0]Y)

Note: J;(6*|6(=1)) does not depend on (=),
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The Independence Sampler

The Normal Approximation may not be adequate.
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@ We can inflate the variance.
@ We can use a heavy tailed distribution, e.g., lorentzian or t.
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Example of Independence Sampler

A simplified model for high-energy spectral analysis.
@ We use the same model and simulated data.

@ This is a simple loglinear model,
a special case of a Generalized Linear Model.

Y; ~ Poisson (\;) with log(\;) = log(a) — B log(E;).

@ The model can be fit with the g1m function in R:

> glm.fit = glm( Y~I(-log(E)), family=poisson(link="log") )
> glm.fitS$Scoef #H### best fit of (log(alpha), beta)
> vcov( glm.fit ) #### variance-covariance matrix

@ Returns MLE of (log(«), 8) and variance-covariance matrix.
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Example of Independence Sampler

@ Alternatively, we can fit («, 8) directly with a general
(but less stable) mode finder.
@ Requires coding likelihood, specifing starting values, etc.
@ Choose parameterization to improve Gaussian approx.
e MLE is invariant to transformations.
e Variance matrix of transform is computed via delta method.
@ We use the general mode finder:
Ji = Normalx(MAP est, Curvature-based Variance Matrix).
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Markov Chain Trace Plots

Time Series Plot for Metropolis Hastings Draws
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Very little “sticking” here: acceptance rate is 98.8%.
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Autocorrelation is essentially zero: nearly independent sample!!
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Marginal Posterior Dist'n of Power Law Param
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This result depends critically on access to a very good
approximation to the posterior distribution.
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Convergence to Stationarity

Consider a finite state space S with arbitrary elements j and j.
o Let p;(t) = Pr(6®) = j|o©) = ).
@ Ergodic Theorem: If a Markov chain is positive recurrent

and aperiodic then its stationary distribution is the unique
distribution 7() such that

> p(tym(i) = w(j) for all jand t > 0.

We say the Markov chain in ergodic and the following hold:
@ pj(t) — n(j)ast — oo forall jand ;.

Pr % zn: h(0") — Ex(h(6))| =1
t=1
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Convergence to Stationarity

Definitions:
@ Chainis irreducible if for all i, j there is t with p;(t) > 0.
Let 7;; be the time of first return, min{t > 0 : #() = j]9(0) = j}.
@ Chain is recurrent if Pr[rj; < oo] = 1 for all .
© Chain is positive recurrent if E[7;] < oo for all i.

Fact: Irreducible chain with a stationary dist'n is pos recurrent.

So we need our chain to
@ beirreducible,
@ be aperiodic, and
© have the posterior distribution as a stationary distribution.
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Has this Chain Converged?

1.0

0.8

psi
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0.4
I

0.2

iteration

Image credit: Gelman (1995) In “MCMC in Practice” (Editors: Gilks, Richardson, and Spiegelhalter).
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Has this Chain Converged?

1.0
1.0

06
6

psi
psi

iteration iteration

Image credit: Gelman (1995) In “MCMC in Practice” (Editors: Gilks, Richardson, and Spiegelhalter).

Comparing multiple chains can be informative!




Diagnosing Convergence
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Choosing a Jumping Rule
Transformations and Multiple Modes
Using Multiple Chains
chain 1 chain 2 chain 3
© © ©
< < <
= = =
T e
o o R
0 10000 20000 0 10000 20000 0
iteration iteration

10000 20000

iteration
@ Compare results of multiple chains to check convergence.

@ Start the chains from distant points in parameter space.
@ Run until they appear to give similar results

e ... or they find different solutions (multiple modes).

David A. van Dyk
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The Gelman and Rubin “R hat” Statistic
Consider M chains of length N: {¢)pm,n=1,... N}.

N Lo -
ZWZWJm*
m—1
;M N
:stﬁ, where sZ, = Zd)nm

m=1

Two estimates of Var(y | Y):
@ W: under estimate of Var(@b | Y) for any finite N.
Q var' (v | Y)=YW+ LB: over estimate of Var(y | Y).

H_ (VW] Y)
R— T

4 1 asthe chains converge.

Compute with coda package in R: http://cran.r-project.org/web/packages/coda/index.html
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Choice of Jumping Rule with Random Walk Metropolis

Practical Challenges and Advice

Spectral Analysis: effect on burn in of power law parameter
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3 acceptance rate=87.5%
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Higher Acceptance Rate is not Always Better!
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sigma = 0.005, 0.08, 0.4
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Aim for 20% (vectors) - 40% (scalars) acceptance rate
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Statistical Inference and Effective Sample Size

@ Point Estimate: F)n = %Z h(H(t)) (estimate of E(h(0)|x)!))

~ 02 14p

@ Variance Estimate: Var(l_v,,) ~ Tﬁ With (ot var@)n)

o2 = Var(h(6)) estimated by 62 = 1= "7, [h(6D) — h,)2,
p = corr [h(6(1), h(9(=1)] estimated by

o1 SlIE)  Allh(E¢ )
"1 S hE0) — Bofe ST [h(60) — A2

@ Interval Estimate: hy, + ty4/Var(h,) with d = nm —1

The effective sample size is n}%ﬁ... ...l computed with coda in R.
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lllustration of the Effective Sample Size

Sample from N(0, 1)
with random walk Metropolis with J; = N(6(9, 7).

What is the Effective Sample Size here? and ¢?

Markov Chain
-1 0
|

-2
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-3

0 200 400 600 800 1000

iteration
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lllustration of the Effective Sample Size

What is the Effective Sample Size here? and ¢?

Markov Chain
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lllustration of the Effective Sample Size

What is the Effective Sample Size here? and ¢?

Markov Chain
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lllustration of the Effective Sample Size

What is the Effective Sample Size here? and ¢?

Markov Chain
0
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lllustration of the Effective Sample Size

What is the Effective Sample Size here? and ¢?
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lllustration of the Effective Sample Size

Effective Sample = 20; o = 0.25. Effective Sample = 75; o = 0.10.

Markov Ch
2 2 a0 1 2 3
Markov Ch
4 2 a4 0 1 o2 3
L

o 200 00 00 800 1000 o 20 00 00 00 1000

Effective Sample = 100; o = 1. Effective Sample = 216; o = 3.5.

o 200 00 00 00 1000 o 20 00 00 00 1000
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Lag One Autocorrelation

Small Jumps versus Low Acceptance Rates
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Effective Sample Size

Balancing the Trade-Off

effective sample size
100 150
| |

50
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Acceptance Rate

Bigger is not always Better!!

1.0
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0.0

log(sigma)

High acceptance rates only come with small steps!!
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Finding the Optimal Acceptance Rate
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Random Walk Metropolis with High Correlation

Practical Challenges and Advice

A whole new set of issues arise in higher dimensions...

Tradeoff between high autocorrelation and high rejection rate:
@ more acute with high posterior correlations
@ more acute with high dimensional parameter

o
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Random Walk Metropolis with High Correlation

Practical Challenges and Advice

In principle we can use a correlated jumping rule, but
@ the desired correlation may vary, and
@ is often difficult to compute in advance.

™

~ 4 ,\
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Random Walk Metropolis with High Correlation

Practical Challenges and Advice

What random walk jumping rule would you use here?

Remember: you don'’t get to see the distribution in advance!
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Choosing a Jumping Rule
Transformations and Multiple Modes

Parameters on Different Scales

Practical Challenges and Advice

Random Walk Metropolis for Spectral Analysis:

Scatter Plot of Posterior Distribution Autocorrelation for alpha
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Diagnosing Convergence
Choosing a Jumping Rule
Transformations and Multiple Modes

Parameters on Different Scales

Practical Challenges and Advice

Consider the Scales of « and f:

Scatter Plot of Posterior Distribution Scatter Plot of Posterior Distribution
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Diagnosing Convergence
Choosing a Jumping Rule

Practical Challenges and Advice Transformations and Multiple Modes

Improved Convergence

Original Jumping Rule:

Autocorrelation for alpha Hist of 500 Draws excluding Burn-in
o
o 10 -
g i <4 —— Posterior Density
©
=n @
w
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<
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o o~ o
o
o o
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Diagnosing Convergence
Choosing a Jumping Rule
Transformations and Multiple Modes

Practical Challenges and Advice

Improved Convergence

Improved Jumping Rule:

Autocorrelation for alpha Hist of 500 Draws excluding Burn—in
= o
g d <d - Posterior Density
4
4
-
o
T T ; T ; T T T T T T
0 20 40 60 80 100 4.8 5.0 5.2 5.4 5.6




Diagnosing Convergence
Choosing a Jumping Rule

Practical Challenges and Advice Transformations and Multiple Modes

Parameters on Different Scales

With Jumping Rule: Norm(6(=") kM), or better ty(6~"), kM).

Try:
@ Using the variance-covariance matrix from a standard
fitted model for M

... at least when standard mode-based model-fitting software is available.

© New adaptive methods that allow the jumping rule to
evolve on the fly.!

Always: Aim for acceptance rate of

~20% (multivariate update) or ~40% (univariate update).

! E.g., “Optimal proposal distributions and adaptive MCMC” by JS Rosenthal in Handbook of Markov Chain
Monte Carlo (CRC Press, 2011).
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Diagnosing Convergence
Choosing a Jumping Rule
Transformations and Multiple Modes

Practical Challenges and Advice

Transforming to Normality

Parameter transformations can greatly improve MCMC.

Recall the Independence Sampler:

pug. Q
o ®
o
. -
@
Poy _ 9
() () !
@ Tz ©
£ o £
= o = B
o
a4
| IS}
o
o | 8 J
° T T T T T T T 1 © T T T T T T T 1
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
theta theta

The normal approximation is not as good as we might hope...
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Choosing a Jumping Rule
Transformations and Multiple Modes

Practical Challenges and Advice

sforming to Normality

But if we use the square root of 6:
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Diagnosing Convergence
Choosing a Jumping Rule
Transformations and Multiple Modes

Practical Challenges and Advice

sforming to Normality
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5
©
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£ 5 ©
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g | 2
o o S
8 J o |
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theta sqrt(theta)

The normal approximation is much improved!




Diagnosing Convergence
Choosing a Jumping Rule

Practical Challenges and Advice Transformations and Multiple Modes

Transforming to Normality

Working with with Gaussian or symmetric distributions leads to
more efficient Metropolis and Metropolis Hastings Samplers.

General Strategy:
@ Transform to the Real Line.
@ Take the log of positive parameters.
If the log is “too strong”, try square root.
Probabilities can be transformed via the logit transform:

log(p/(1 — p)).

More complex transformations for other quantities.
Try out various transformations using an initial MCMC run.
Statistical advantages to using normalizing transforms.
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Diagnosing Convergence
Choosing a Jumping Rule
Transformations and Multiple Modes

Practical Challenges and Advice

Removing Linear Correlations

Linear transformations can remove linear correlations

.
v ©
0 -
N
o
o - fg—
> ™
I
> N
o'_
Ll;':_ [
<
?'_
o
S
! ©
T T 1T 1T T 1 Q LI
-3 -1 0 1 2 3 -3 -1 0 1
X X

Bayesian Astrostatistics: Part Il



Diagnosing Convergence
Choosing a Jumping Rule
Transformations and Multiple Modes

Practical Challenges and Advice

Removing Linear Correlations

... and can help with non-linear correlations.
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Diagnosing Convergence
Choosing a Jumping Rule

Practical Challenges and Advice Transformations and Multiple Modes

Multiple Modes

@ Scientific meaning of
multiple modes.

@ Do not focus only on the
major mode!

@ “Important” modes. " X

@ Challenging for
Bayesian and
Frequentist methods.

> o -

@ Consider Metropolis & i
Metropolis Hastings. %
@ Value of excess 71
dispersion and multiple
starting values. G 5 o : i

yk



Diagnosing Convergence
Choosing a Jumping Rule

Practical Challenges and Advice Transformations and Multiple Modes

Multiple Modes

@ Use a mode finder to “map out” the posterior distribution.

@ Design a jumping rule that accounts for all of the modes.
@ Run separate chains for each mode.

@ Use one of several sophisticated methods tailored for
multiple modes.
@ Adaptive Metropolis Hastings. Jumping rule adapts when
new modes are found (van Dyk & Park, MCMC Hdbk 2011).
@ Parallel Tempering.
© Nested Sampling (Skilling, 2006, Bayesian Analysis)
@ Many other specialized methods.
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Outline

@ The Gibbs Sampler and Data Augmentation
@ The Gibbs Sampler
@ Data Augmentation
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Breaking a Complex Problem into Simpler Pieces

@ Ideally we sample directly from p(#|Y) without Metropolis.
@ This may not work in complex problems.
@ BUT in some cases we can split § = (61, 62) so that

p(01]02, Y) and p(62]61, Y)

are both easy to sample although p(6|Y) is not.
@ The Two-Step Gibbs Sampler, starting with some 6(%),
Fort=1,2,3,...
Draw: 9?) ~ p(61 \Ggq), Y)
Draw: eg’) ~ p(ez\eﬁ”, Y)

David A. van Dyk Bayesian Astrostatistics: Part Il
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An Example

Recall Simple Spectral Model: Y; ~ Poisson (aEi_B) .
Using p(a, B) x 1,

n

_[aE B —B1Y,

po]Y) < e 5 NaE
i=1

n
N —aY " ETR sy, —BY;
e =150 ylei=1 IHE’, 1
i=1

So that
p(alB,Y) o< e ¢ i Ei_ﬂa27z1 Yj

n n
= Gamma (Z Y+ 1, Z El_ﬁ>
i=1 i=1
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Embedding Other Samplers within Gibbs

In this case p(S|a, Y) is not a standard distribution:

n
p(Bla, ¥) o e Xl 6 [T £777

i=1

@ We can use a Metropolis or Metropolis-Hastings step to
update s within the Gibbs sampler.

@ The result is known as Metropolis within Gibbs Sampler.

@ Advantage: Metropolis tends to preform poorly in high
dimensions. Gibbs reduces the dimension.

@ Disadvantage: Case-by-case probabilistic calculations.
(But always need case-by-case algorithmic development and tuning.)
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When Will Gibbs Sampling Work Well?

10123
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T T T T
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iteration
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When Will Gibbs Sampling Work Poorly?

“ - WMWMW\WM

o~ I

- - ol T T T T T

oo

-

] ..

! ©

o | 8 5]

! o~
T T T T T T T B e e e
3 2 0 1 2 3 o s 10 15 2 2 2 s

autocorrelation = 0.998, effective sample size =5

High Posterior Correlations are Always Problematic.
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Multiple Modes

| How will the Gibbs

- Sampler Handle
Multiple modes?
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The General Gibbs Sampler

@ In general we break 6 into P subvectors 6 = (64, ...,0p).
© The Complete Conditional Distributions are given by
p(0pl01,...,0p-1,0p41,...,0p,Y), forp=1,... P
© The Gibbs Sampler, starting with some 60,
Fort=1,2,3,...
Draw 1: 6§ ~ p(61168 ", ..., 64" y)

Draw p: 6 ~ p(Bp16", .60, 65, 08D, y)

Draw P: G(Ff) ~ p(ep\eﬁ’), . ,G(Ff)_1, Y)

© Determining the partition of ¢ is a matter of skill and art.
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Example:
Calibration Uncertainty in High Energy Astrophysics

@ Analysis is highly dependent on Calibration Products:
Effective area records sensitivity as a function of energy
Energy redistribution matrix can vary with energy/location
Point Spread Functions can vary with energy and location
Exposure Map shows how effective area varies in an image

IS effctve area (c)
2 o s0  e0o

Eley)

A CHANDRA effective area.

100000 2000
EGERT exposure map

Sample Chandra psf's (area x time)

(Karovska et al., ADASS X)
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Example: Calibration Uncertainty

Derivation of Calibration Products
@ Prelaunch ground-based and
post-launch space-based
empirical assessments.

@ Aim to capture deterioration
of detectors over time. y Etey

50

default subtracted effective area (cm?)

@ Complex computer models of ‘EF
subassembly components. 3l

. . . . . or
@ Calibration scientists provide T
. N

a sample representing 2

uncertainty 17 18 19 20 21 22 23
r
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Example: Calibration Uncertainty

We wish to incorporate uncertainty represented in Calibration
sample into a Fully Bayesian Analysis.

@ PyBLoCXS (Python Bayesian Low Count X-ray Spectral):
provides a MCMC output for spectral analysis with known
calibration products.

@ Can we leverage PyBLoCXS for calibration uncertainty?
@ Gibbs Sampler:

Draw 1: Update A (effective area) given 6 (parameter).
Draw 2: Update 6 given A with PyBLoCXS.

Power of Gibbs Sampling: breaks a problem into easier parts.
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How do we draw A?

We have only a calibration sample, not a formal model.

We use Principal Component Analysis to represent uncertainly:

m
A~Ao+5+Zejrjvj,
j=1
Ap: default effective area,
d: mean deviation from A,
r; and v;: first m principle component eigenvalues & vectors,
g;. independent standard normal deviations.

Capture 95% of variability with m = 6 — 9.
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A Prototype Fully Bayesian Sampler

An MH within Gibbs Sampler:
STEP 1: e~ K(e|€, ") via MH with limiting dist'n p(e|6, Y)
STEP 2: 0 ~ K(0|€, ") via MH with limiting dist'n p(¢|e, Y)

@ STEP 1: Gaussian Metropolis jumping rule centered at €'.
@ STEP 2: Simplified pyBLoCXS (no rmf or background).

A Simulation.
@ Sampled 10° counts from a power law spectrum: e—2£.

@ A is 1.50 from the center of the calibration sample.
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Sampling From the Full Posterior

Default Effective Area Pragmatic Bayes Fully Bayes

< < <

o o o

o o o

[<>) ... [<>) [<>)

o - o

< . S S

~N ~N ~N

© © ©

o 4 o 4 o 4

— T T i T T 7 — T T T

0.90 0.95 1.00 1.05 0.90 0.95 1.00 1.05 0.90 0.95 1.00 1.05
0, 6, 6,

6y = normalization, > = power law param, purple bullet = truth

Citations:

Lee, Kashyap, van Dyk, Connors, Drake, Izem, Meng, Min, et al. (2011). Accounting for Calibration
Uncertainties in X-ray Analysis: Effective Areas in Spectral Fitting. The Astrophysical Journal, 731,
126-144.

Xu, van Dyk, Kashyap, Siemiginowska, Connors, Drake, Meng, et al. (2014). A Fully Bayesian for Jointly
Fitting Instrumental Calibration and X-ray Spectral Models. The Astrophysical Journal, to appear.
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Example: Transformations are Key

Fitting Computer Models for Stellar Evolution

@ A complex computer model predicts observed phofometric
magnitudes of a stellar cluster as a function of
M;: stellar masses, and
©: cluster composition, age, distance, and

absorption:
G(M;,©)
@ We assume indep Gaussian errors with known variances:
n 2
(xj — Gj(Mi1, ©))
M O|X)= exp | —
Lo(M,®©|X) 1:[ ]_I — o < 2,2

- U
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Example: Stellar Evolution

Model Extensions:
@ Binary stars: The luminosities of component stars sum.

@ Field stars: Contaminate the data and magnitudes don’t
follow the pattern of the cluster.

@ Initial Final Mass Relation is fit to combine stellar evlolution
models for the main sequence and for white dwarfs.

@ A combination of informative and non-informative priors.

Citations:

van Dyk, D. A., DeGennaro, S., Stein, N., Jeffreys, W. H., von Hippel, T. Statistical Analysis of Stellar
Evolution. The Annals of Applied Statistics 3, 117-143, 2009.

DeGennaro, S., von Hippel, T., Jefferys, W., Stein, N., van Dyk, D., and Jeffery, E. Inverting Color-Magnitude
Diagrams to Access Precise Cluster Parameters: A New White Dwarf Age for the Hyades. The
Astrophysical Journal, 696, 12-23, 2009.

Jeffery, E., von Hippel, T., DeGennaro, S., van Dyk, D., Stein, N., and Jeffreys, W. H., The White Dwarf Age
of NGD 2477. The Astrophysical Journal, 730, 35-44, 2011.
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Stellar Evolution: MCMC Strategy

Metropolis within Gibbs Sampling

@ 3N -+ 5 parameters, none with closed form update.

@ Strong posterior correlations among the parameters.
Strong Linear and Non-Linear Correlations Among Parameters

@ Static and/or dynamic (power) transformations remove
non-linear relationships.

@ A series of preliminary runs is used to evaluate and
remove linear correlations.

@ We tune a linear transformation to the correlations of the
posterior distribution on the fly.

@ Results in a dramatic improvement in mixing.
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Dynamic transformations

3 -2-10 1 2 3
x
<
i
5
x
y
3 -2-10 1 2 3

y
-3 -2-10 1 2 3
I T R N R B

‘7;&%
i Y

I B B B S T T T T T T T T T T T T
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

A toy example:
@ Initial Gibbs run shows high autocorrelation, panel 1.
@ Fity = a + Ax and transfrom Z = Y — & — j3X.
© Rerun Gibbs, but sampling p(X|Z) and p(Z|X), panel 2.
© Transform back to X, Y, panel 3.
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Results for Toy Example

trace plot for initial run acf for initial run
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trace plot for final run acf for final run
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log age
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Results for Stellar Evolution Model

Initial Burn—in Period
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Data Augmentation

@ We can sometimes simplify computation by including other
unknown quantities in the model.

@ Canonical Examples: Missing Data in Sample Surveys.
@ Component photon energies of piled events (spectral analysis).
@ If we had Complete Data analysis would be easier.

@ More generally: there may quantities that we never
expected to observe, but had we observed them, data
analysis would be easier.

We call such quantities Augmented Data and their use in
statistical computation The Method of Data Augmentation.
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Handling Background with DA

Simple Example: Backgd contamination in single bin detector.
@ Contaminated source counts: Y = Ys+ Yp
@ Background counts: X
@ Background exposure is 24 times the source exposure.
@ We observe Y and X.
A Poisson Multi-Level Model:
LEVEL 1: Y|Yg, Ag ~ Poisson(Ag) + Yz.
LEVEL 2: Yg|Ag ~ Pois(Ag) and X|Ag ~ Pois(24)\p).
LEVEL 3: Specify a prior distribution on Ag and Ag.
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Handling Background with DA

A Poisson Multi-Level Model:

LEVEL 1: Y|Yg, Ag ~ Poisson(Ag) + Yz.

LEVEL 2: Yg|Ag ~ Pois(Ag) and X|Ag ~ Pois(24)\p).

LEVEL 3: Specify a prior distribution on Ag and Ag.
Data Augmentation

@ Formulate model in terms of “missing data”.

@ If Yg were known.

@ If A\g and \g were known.

With Yg we simplify the relationships among the quantities.
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The Data Augmentation Sampler

A Two-Step Gibbs Sampler:
STEP 1: Sample Yg given (Ag, Ag), X, and Y.

L AB
Ys ~B 1y, —28
B inomia ( et /\B>

STEP 2: Sample (Ag, A\g) given X, Yg, and Ys.
Ag ~ Gamma(X + Yg+ 1,24 + 1)
Ag ~ Gamma(Yg + 1,1)

The power of data augmentation is that it separates a complex
problem into a series of simpler parts... just like Gibbs Sampler.
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Details of STEP 1

p( YB7 ’AB7)‘37 Y) X p( Y57 Y‘)‘Ba)‘S)
= p(Y|Ag,As, YB) x p(YB|AB, As)
e—As)\)S/fyB y ef}\B)\EB
(Y = Yp)! Yg!
1

Y—YBAYB
X VIV s B

Yl s \7'B g \'B
Y = Yp)!Ya! ()\3+/\B> </\3+)\B>

i . AB
= B IY,—
1mnomia < )\S n )\B>

Requires case-by-case probability calculations.
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Details of STEP 2

P(As; AB, | Y, Y. X) = p(rs, A, |Ys, YB, X)
o« p(Ys, Y8, X|Ag, As)

= p(Ys|As) p(Ys|As) P(X|AB)

e—,\s/\gs e—Ag)\EB 9724,\5(24)\B)X
Ys! Yg! X!

~ (e‘ASA§S> % (e—(24+1))\3>\EB+X)

x YYs+1,1) x~v(X+Ysg+1,24+1)
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Results

prior posterior joint posterior
with flat prior
©
i <
o
s 2
o K]
~ =}
o
o o
o T T T T T o T T T T T
0 2 4 6 8 0 2 4 6 8 10 0 2 4 6 8
lamS lamS lamS

Here Y =1 and X = 48.
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Handling a Spectral Emission Line

Model 1

Recall the Power Law Spectral Model:
@ Y, ~ Poisson (aEi_B>.
Add a Spectral Emission Line:
@ Y; ~ Poisson (aE,—ﬁ Flfic c(a)}).

Q /{ie L£(d)}isoneifie L(Y),
otherwise it is zero. Model 2

Q L(O)={6-1,0,0+1}
0 92:(0457’7’5)

Spectrum
02 04 06 08

Spectrum
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Handling a Spectral Emission Line

Continuum + Emission Line Model: Model 1
@ Y, ~ Poisson (aEf’B +li e £(5)}>
© An example of a finite mixture model.
@ Let Z be count in bin i due to line.

Q Zj|(V,02) ~

Binomial | Y], 'vl{l € L()} —3 _— Model 2
yH{ie L(6)} + aE;

Spectrum
02 04 06 08

Spectrum

© Update «, 3,7, and 6 given Z; and
continuum count = X; = Y; — Z?
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A Metropolis within Gibbs Sampler

A Two-Step Sampler:
STEP 1: Sample Z; given (6o, Y;), fori=1,... n.

Zi|(Yi,02) ~ Binomial | Y, _71{’ € L(9)} -
vli{i € L(8)} + aE;

STEP 2: p(a, 8,7,6|X, Z) = p(a, BIX)p(v,6|2)
= p(a, B|X)p(~10, Z2)p(6]2)
@ Sample p(«, 3|X) using Metropolis or MH.
Q 1((5,Z) ~ gamma (3_ Z;, 3)
© Updating ¢ given Z is tricky.
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When Data Augmentation Fails

Consider a simple (spectral) ~
model with the given (latent) g
cell counts.
Y = Cell Counts 10 4 8 1 2 0
Continuum Counts(X) P T TN N P S
Llne Counts (Z) A A0 A IRENIRIE WIoOuUcCT, vyitatct
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When Data Augmentation Fails

Consider a simple (spectral) ~
model with the given (latent) 8
cell counts.
1
Y = Cell Counts 10 | 4 8 1 2 0

Continuum Counts(X) | 10 4 ~3 1 2 0

Line Counts (2) 0 0 ~5 0 0 0
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When Data Augmentation Fails

Consider a simple (spectral)
model the with given (latent)
cell counts.

model

Given Z what is the location
of the emission line??

Y = Cell Counts 10 4 8 1 2 0

Continuum Counts(X) | 10 4 ~3 1 2 0

Line Counts (2) 0 0 ~5 0 0 0

David A. van Dyk Bayesian Astrostatistics: Part Il
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Handling a Spectral Emission Line

What Went Wrong?

High Posterior Correlations |
re Always Problematic -

@ Here Z and § are highly N
correlated. In fact Var(6|Z2) = 0. o

@ Given Z, § will not change from T T T
iteration to iteration.

SOLUTION: Sample Z and § in the same step.
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An Improved Metropolis within Gibbs Sampler

A Two-Step Sampler:
STEP 1: Sample p(Z, |, 8,7, Y) = p(8|e, 8,7, Y)P(Z[62, Y):
@ Sample 6 given Y, «, 3, using grid method:

p((;’aa 67 s Y) X p( Y‘62)

Q Fori=1,...,n,
Zj|(Y;,02) ~ Binomial | Y], _/YI{I € L)} —3
vI{i € L(5)} + aE;
STEP 2: Sample p(a, 8,13, X, Z) = p(a, B1X)p(+15, Z):
@ Sample p(«, 3|X) using Metropolis or MH.
Q 1[(6, X) ~ gamma (3 Z;, 3)
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Strategies for Implementing Gibbs Samplers

How we set up the complete conditional distributions can have
a big impact on the performance of a Gibbs Sampler.
@ We have seen the potential effect of the choice of subsets:
e p(Ye, <) and p(p,s|d¥) versus
o p(v,¢lc) and p(<|d, ¢)
© Combining steps into a single joint step is called blocking.
This generally improves convergence:
o p(dlg, <), p(vld, <), and p(c[d, o) versus
o p(v,¢l<) and p(c[J, )
© Removing a variable from the chain is called collapsing.
This is also generally helpful:
o p(¥,pls) and p(s|d, ) versus
o p(Jls) and p(c[V)
© Partial Collapsing encompasses blocking and collapsing.
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Example: Using DA for Spectral Analysis
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Overview of Recommended Strategy

(Adopted from Bayesian Data Analysis, Section 11.10, Gelman
et al. (2005), Second Edition)

@ Start with a crude approximation to the posterior
distribution, perhaps using a mode finder.
© Simulate directly, avoiding MCMC, if possible.

© If necessary use MCMC with one parameter at a time
updating or updating parameters in batches.

© Use Gibbs draws for closed form complete conditionals.

@ Use metropolis jumps if complete conditional is not in
closed form. Tune variance of jumping distribution so that
acceptance rates are near 20% (for vector updates) or
40% (for single parameter updates).
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Overview of Recommended Strategy- Con’t

© To improve convergence, use transformations so that
parameters are approximately independent and/or
approximately Gaussian.

@ Check for convergence using multiple chains.

© Compare inference based on crude approximation and
MCMC. If they are not similar, check for errors before
believing the results of the MCMC.
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