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Model Building

Recall Simple Multilevel Model

Example: Background contamination in a single bin detector

@ Contaminated source counts: y = ys + y5
@ Background counts: x
@ Background exposure is 24 times source exposure.

A Poisson Multi-Level Model:
LEvEL 1: y|yB, As st Poisson(Ag) + s,
dist

LEVEL 2: yg|Ag ' Pois(Ag) and x|Ag ' Pois(Ag - 24),
LeveL 3: specify a prior distribution for Ag, Ag.

Each level of the model specifies a dist'n given unobserved
quantities whose dist'ns are given in lower levels.
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Multi-Level Models

Definition

A multi-level model is specified using a series of conditional
distributions. The joint distribution can be recovered via the
factorization theorem, e.g.,

Pxyz(X,y,2l0) = pxjvz(X|y, z,61) py|z(¥|Z,02) pz(2|03).

@ This model specifics the joint distribution of X, Y, and Z,
given the parameter 6 = (64, 62, 63).

@ The variables X, Y, and Z may consist of observed data,
latent variables, missing data, etc.

@ In this way we can combine models to derive an endless
variety of multi-level models.
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Example: High-Energy Spectral Modeling

Model Building
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A Multilevel Model for Selection Effects

We wish to estimate a dist'n of absolute magnitudes, M;,
@ Suppose M; ~ NORM(y,02), fori=1,....n;
@ But M; is only observed if M; < F(z;)';
@ Observe N(< n) objects including z;, § = (u, 0%) estimated.

(Forp = —19.3and o = 1))
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1M,‘ observed if < F(z;) = 24 — pu(z); p(z;) from A-CDM model (Qm = 0.3, Q. = 0, Hy = 67.3km/s/Mpc).
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Model Building

Model 1: Ignore Selection Effect

Likelihood: M;|0, z; ~ NORM(u, 02), fori=1,...,N;
Prior: u ~ NORM(pg,72), and 02 ~ 52/x2;
Posterior: p | (My, ... M,,0%) ~ NORM(-,-) and

0'2 | (M1 geee Mn, /.L) ~ /X2 (Details on next slide.)

Definition

If (some set of) conditional distributions of the prior and the
posterior distributions are of the same family, the prior dist'n is
called that likelihood’s semi-congutate prior distribution.

Semi-conjugate priors are very amenable to the Gibbs sampler.
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Gibbs Sampler for Model 1

Step 1: Update . from its conditional posterior dist'n given ¢2:

Y~ NoRM (ﬁ, sﬁ)
with N 4
i=(m +2)/(Gw + %) = (@ =) -

Step 2: Update o2 from its conditional posterior dist'n given s:

N
(03" ~ [Z (M; — T )? ¢ B"’] /i1

i=1

In this case, resulting sample is nearly independent.
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A Closer Look at Conditional Posterior: Step 1

Given o2:
Likelihood: M;|6, zj ~ NORM(u, o), for i = 1,..., N;

Prior: p ~ NORM(pg, 72)
Posterior: yu | (My, ... Mn,0?) ~ NORM(f, s2) with

o (3NM o N 1\ o N 1\
“Z('Ueﬂz zrz) d-(z+2)

@ Posterior mean is a weighted average of sample mean
(4 >N, My) and prior mean (1), with weights X and 5.

o2

@ Compare s2 with Var <1N N, M,-) = <.
@ Reference prior sets g = 0 and 72 = oo. (Improper and flat on 4..)
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A Closer Look at Conditional Posterior: Step 2

Given pu:
Likelihood: M;|0, z; ~ NORM(u, 02), fori=1,...,N;
Prior: 02 ~ 32/x2;

Posterior:

N
t+1
@) My, M) ~ | (M= p+) +ﬁ2] /G
i=1

@ The prior has the affect of adding v additional data points
with variance /2.

@ Reference prior setsv = ﬁz = 0. (Improper and flat on log(s2).)
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Model 2: Account for Selection Effect

Likelihood: The distribution of the observed magnitudes:
Pr( - 1|MI7ZH )p(Mi|972i) .
SP O/ = 1|MI’Zh ) (Mf|972i)dMl',

p(M;|O; =1,0,z) =

Here
® M;|0, z ~ NORM(p, 0?) and
@ Pr(O; = 1|M;, z,0)) = Pr(M; < F(z;)|0)
So Mj|(O; = 1,6, z;) ~ TRUNNORM[, o%; F(Z)].

Prior: yu ~ NORM(po, %), 0% ~ 82/XZ;

Posterior: Prior is not conjugate, posterior is not standard.
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MH within Gibbs for Model 2

Neither step of the Gibbs Sampler is a standard dist'n:

Step 1: Update ; from its conditional dist'n given o2

Use Random-Walk Metropolis with a
Norm(u(?), s2) proposal distribution.

Step 2: Update o2 from its conditional dist'n given s

Use Random-Walk Metropolis Hastings with a
LOGNORM [log (o2 (), s2| proposal distribution.

Adjust s2 and s3 to obtain an acceptance rate of around 40%.
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Simulation Study |

@ Sample M; ~ NORM(p :—193 o=1)fori=1,...,200.
@ Sample z; from p(z)c(1 + z)?, yielding N = 112.
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Simulation | (i = —19.3, o = 20, v = 0.02, 8% = 0.02)
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Simulation Study I

@ Sample M; ~ NORM(u = —193 o=3)fori=1,...,200.
@ Sample z; from p(z)c(1 + z)?, yielding N = 101.
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Simulation Il (4 = —19.3, o = 20,
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Frequentists Origins of Hierarchical Models

Suppose we wish to estimate a parameter, 6, from repeated
measurements:

yi "SP NoRM(6,02) for i=1,...,n

E.g.: calibrating a detector from n measures of known source.

An obvious estimator:

. 1
o :n;}’i

What is not to like about the arithmetic average?
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Frequency Evaluation of an Estimator

@ How far off is the estimator?
(6-10)2

@ How far off do we expect it to be?
N A~ 2 N 2
MSE(d16) = E [0 -0 | 6] = [ (0) - 6)" fr(ylo)dy

@ This quantity is called the Mean Square Error of 6.

@ An estimator is said to be inadmissible if there is an
estimator that is uniformly better in terms of MSE:

MSE(A]6) < MSE(A""¢|9) for all 6.
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MSE of Four Estimators of Binomial Probability

Recall Simulation Study:

mean square error

mse
0.04 0.08
1 1 1

0.00
1

@ The MSE (of all four estimators) depends on true p.
@ In this case: no evidence of inadmissiblity.
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Inadmissibility of the Sample Mean

Suppose we wish to estimate more than one parameter:

yiji“,‘iep NORM(6j,02) for i=1,...,nand j=1,...,G
The obvious estimator:
- 1 & . .
07 = - Z; Yij isinadmissible if G > 3.
=

The James-Stein Estimator dominates g"aive:

8 = (1 — W) g7 + Sv forany v
o?/n

2 _ . )2
20+ 12 and 77 = E[(0, — v)7].

with 'S ~

Specifically, w’s = (G — 2)02/,,:/6:1 (éjr_laive — 2,
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Shrinkage Estimators

James-Stein Estimator is a shrinkage estimator:

é‘/qs _ (1 . st) éjpaive T WSy

10

shrinkage estimate

0.2 0.4 0.6 0.8 1.0
data highly variable /

0; very similar (to v)

0.0
0; highly variable /
data very precise
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To Where Should We Shrink?

James-Stein Estimators
e Dominate the sample average for any choice of v.
@ Shrinkage is mild and #'S ~ §"¥¢ for most v
@ Can we choose v to maximize shrinkage?

é‘jJS _ (1 o wJS) é‘jr‘laive + wJSU

o?/n
o2/n+ 12
@ Minimize 72.

with 'S ~ and 72 = E[(0; — v)?].

The optimal choice of v is the average of the 0;.
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lllustration

Suppose:
@ yi ~ NorM(0;,1) forj=1,...,10
@ 0, are evenly distributed on [0,1]

MSE(6""¢) versus MSE(6"):

10

MSE
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Model Building

lllustration

Suppose:
@ yi ~ NorM(0;,1) forj=1,...,10
@ 0; are evenly distributed on [-4,5]

MSE(6""*) versus MSE(6"):
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Intuition

@ If you are estimating more than two parameters, it is
always better to use shrinkage estimators.
@ Optimally shrink toward average of the parameters.
© Most gain when the naive (non-shrinkage) estimators
e are noisy (o2 is large)
e are similar (72 is small)
© Bayesian versus Frequentist:

e From frequentist point of view this is somewhat problematic.
e From a Bayesian point of view this is an opportunity!

© James-Stein is a milestone in statistical thinking.

o Results viewed as paradoxical and counterintuitive.
e James and Stein are geniuses.
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Bayesian Perspective

Frequentist tend to avoid quantities like:
Q E(6;) and Var(6))
QE [(9j — V)z]

From a Bayesian point of view it is quite natural to consider
@ the distribution of a parameter or
© the common distribution of a group of parameters.

Models that are _formulazjed in terms of the latter are
Hierarchical Models.
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A Simple Bayesian Hierarchical Model

Suppose

yil0; "<P NoRrMm(6;,02) for i=1,...,n and j=1,...,G

with -
0; "~" NORM(u, 72).

Let ¢ = (02,72, 1)

a?/n

E(9; | Y = (1 - naive HB h s
0;1Y,0) = ( WHB)Gme 1 WHB Y with W o2/n + 72

The Bayesian perspective
@ automatically picks the best v,
@ provides model-based estimates of ¢,
@ requires priors be specified for 02, 72, and p.
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Color Correction Parameter for SNla Lightcurves

SNla light curves vary systematically across color bands.
@ Color Correction: Measure the peakedness of color dist'n.
@ Details in the next section!!
@ A hierarchical model:

&lc; "<* NoRM(cy,0?) for j=1,...,288

with nd
G "SP NoRM(co, R2) and p(co, Re)oct.

@ The measurement variances, a/? are assumed known.
@ We could estimate each ¢; via ¢; + oy, or...
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Fitting the Hierarchical Model with Gibbs Sampler

~ indep .
&leg ~" NoRM(gj, 0%) for j=1,...,G

c,-miep NORM(co, R2) and p(co, Rs)ocl.

To Derive the Gibbs Sampler Note:

@ Given (¢, R%), a standard Gaussian model for each

N

indep 2 . indep 2
Cilei ~" NORM(c;,07) with ¢; "~ NORM(co, Rg)-
@ Given ¢y, ..., cg, another standard Gaussian model:

¢; "P NORM(cy, R2) with p(co, Re)oc1.
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Fitting the Hierarchical Model with Gibbs Sampler

The Gibbs Sampler:

Step 1: Sample ¢y, ... cg from their joint posterior given (co, R2):

(1)
G

8 e 1 1 L2 1 1 -
i = ( =+ (F,vz)(: 1))/(7}2 + (H%)(f—ﬂ)i S/- = (? + (Rg)(f—U) .

Step 2: Sample (co, R2) from their joint posterior given ¢, ... cq :

(c,,c:0 ) (R2)=1) ~ NoRM (ny, S7)

-2 o 1 &
(R2)D|(c",....c) ~ F=T 7 with &= —Z e’

XG-2

cét)|(c1(t)7...7cg))7 (R2)® ~ NORM (57 (H%)(’)/G)
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Shrinkage of the Fitted Color Correction

Simple Hierarchical Model for ¢

Model Building

+ + + + + Likelihood Fit

© —— 95% Credible Interval
s ° 7| o |+ |
= I
c
-
g 39 L+
3
g
w
N :
2 S —+—
E e
14 -
g +
8 o | -+
s °
E —+—
5 ——
(SIS =

7T =

+

0.0 0.1 0.2 0.3 0.4 0.5

R

Pooling may dramatically change fits.
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Standard Deviation of the Fitted Color Correction

Simple Hierarchical Model for ¢

Model Building

+ + + + + Likelihood Fit +

95% Credible Interval

+

i

Conditional Posterior Standard Deviation of c¢;

000 005 010 015 020 025 030 0.35

R,

Borrowing strength for more precise estimates.
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The Bayesian Perspective

Advantages of Bayesian Perspective:

@ The advantage of James-Stein estimation is automatic.
James and Stein had to find their estimator!

@ Bayesians have a method to generate estimators.
Even frequentists like this!

@ General principle is easily tailored to any problem.

@ Specification of level two model may not be critical.
James-Stein derived same estimator using only moments.

Cautions:

@ Results can depend on prior distributions for parameters
that reside deep within the model, and far from the data.
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The Choice of Prior Distribution

Suppose
yil0; " Norm(60),02) for i=1,...,nand j=1,...,G

with -
0; "~" NORM(u, 72).

@ Reference prior for normal variance: p(c?)oc1/02, flat on log(c?)
@ Using this prior for the level-two variance,

p(7‘2)oc1/72

leads to an improper posterior distribution:

G yj— T
p(T2|y)OCp(T2) Var(l‘t'yv T) exp {Z o (y] E(,LLU/, 2))2 }

(02 +72)CG 2(02 + 72)
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Type la Supernovae as Standardizable Candles

If mass surpasses “Chandrasekhar threshold” of 1.44M ...

Sheds outer Cools and Butifitcan It may pass 1.4

Expands to layers contract 1o accrete mass

red giant

; ¢ solar masses and
Ry 1 a binary I
white dwarf TOm & HRany suddenly explode

— L pager into a Type la
’ 2 supernova
s i 10 billion years

If a white dwarf's binary partner

is another white dwarf, then accretion
to one of them could drive it

to supernova conditions,

Image Credit: http://hyperphysics.phy-astr.gsu.edu/hbase/astro/snoven.html

Due to their common “flashpoint”, SN1a have similar absolute
magnitudes:
M; ~ NORM(My, o2

mn
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Predicting Absolute Magnitude

SN1a absolute magnitudes are correlated with characteristics
of the explosion / light curve:

@ x;: rescale light curve to match mean template
@ ¢;: describes how flux depends on color (spectrum)

-20 - -20
asf K/ = {9
Ui

= o 2
S -18F Time scale stretch 418 €
g factor applied 2
Temnplate light curve E
g A7k for determining o7 E
= Intensity, absolute magnitude "
é steeper decline of Type la supernova I

161 Observed light curves e

1 1 1 1 1 1
20 0 20 40 0 20 40

Credit: http://hyperphysics.phy-astr.gsu.edu/hbase/astro/snoven.html
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Phillips Corrections

@ Recall: Low-z calibration sample
-20 T T T T After dust
M NORM(MO7 1nt) : t"correction
-19.5
@ Regression Model: 10
/\/’j = —OéXj + 60_/ + I\/Ije, é-m,s- 5‘- . "‘_ g
. 2 g -18F b
with M¢ ~ NORM(Mp, 02). 2 A\
K] -17.5F Before d_uSt b
° 0_62 < O'i2m - i . correction |
. = 1651 *+ Mg i
@ Including x; and ¢; reduces = CBen|
variance and increases § T os 1_ig 14 e
' . 15
precision of estimates. Light curve stretch

Brighter SNla are slower decliners over time.
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Distance Modulus in an Expanding Universe

Apparent mag depends on absolute mag & distance modulus:
Mg = pj+ M = pj+ M —ax;+ B¢
Relationship between p; and z;

@ For nearby objects, B N - -
z; = velocity/c ) Y : /

velocity = Hp distance.

-

.-/-
(Correcting for peculiar/local velocities.) " Flat Universe

@ For distant objects, involves
expansion history of Universe:

paration Between Gal

Se

Hj = g(zjv Q/\7 QM7 HO)

= 5logqq (distance[Mpc]) + 25 Time

http://skyserver.sdss.org/dr1/en/astro/universe/universe.asp

@ We use peak B band magnitudes.
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Hierarchical Model: Using SNla to Fit Cosmological Parameters
A Multi-Level Models for X-ray Image Analysis

Accelerating Expansion of the Universe

2011 Physics Nobel Prize:
discovery that expansion
rate is increasing.

Dark Energy is the
principle theorized
explanation of accelerated
expansion.

Qa: density of dark energy

(describes acceleration).

Qu: total matter.

David A. van Dyk

Qu=03,Q,=07 ¢

Average distance between galaxies

137 -10 -5 0 5 10 15
Billions of years from now
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A Hierarchical Model

Level 1: Cj, Xj, and mg; are observed with error.

G Gi
X; | ~ NORM xi |, G
mBj mBj

Level 2:

@ ¢ ~ NoRrM(cy, R2)

@ x; ~ NORM(xo, R2)

© The conditional dist'n of mg; given ¢; and Xx; is specified via

mp; zp,j+l\/lf—axj+ﬁcj,

with ; = g(2j, Qa, Qu, Ho) and Mf ~ NORM(Mp, 02).

Level 3: Priors on a, 3, Qx, Qu, Ho, ¢o, R2, X0, RZ My, o2
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Regression With Measurement Errors

The above model encompasses measurement error model:

Level 1: ¢;, x;, and mg; are observed with error.

G G\ .
% | ~ NORM x|, G ;.
I:)\"IB/' mB,
Level 2: [Omitting hierarchical and cosmological components]

The conditional dist'n of mg; given ¢; and x; is specified via

mgj = Mo — ax; + B¢ + M{ with M ~ NORM(0, o?).

Level 3: Priors on My, a, 3, o2, and (hierarchical? on) ¢; and x;.

We can simply model the complexity and
fit the resulting model using MCMC.
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Other Model Features

Results are based on an SDSS (2009) sample of 288 SNla.

In our full analysis, we also

@ account for systematic errors that have the effect of
correlating observation across supernovae,

©

allow the mean and variance of M; to differ for galaxies
with stellar masses above or below 10'° solar masses,

include a model component that adjusts for selection
effects, and

use a larger JLA sample? of 740 SNla observed with
SDSS, HST, and SNLS.

© ©O

°Betoule, et al., 2014, arXiv:1401.4064v1
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Shrinkage Estimates in Hierarchical Model
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Shrinkage Errors in Hierarchical Model
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Fitting Absolute Magnitudes Without Shrinkage

Under the model, absolute magnitudes are given by
M; = mgj — pj + ax; — B¢ with p; = g(2;, Qp, Qum, Ho)

Setting
@ o, 3,Qa, and Q to their minimum y? estimates,
@ Hy =72km/s/Mpc, and
© mg;, x;, and ¢; to their observed values

we have

A A~

A 2, Ho) + &% — B¢

S

Il
3
8]

|
Q
N
ol

with error

~ /Var(g)) + 42Var(%)) + 2 Var()

David A. van Dyk Bayesian Astrostatistics: Part IIl



Hierarchical Model: Using SNla to Fit Cosmological Parameters
Extended Modeling Examples A Multi-Level Models for X-ray Image Analysis

Comparing the Estimates

——  Posterior Error-bar
———  x°-based Error-bar

M° (absolute magnitude)
-19
!
o
Fef——

T T T T T T
0.4 0.6 0.8 1.0 12 1.4 16

z (red shift)
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Comparing the Estimates
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Fitting a simple hierarchical model for ¢;

Simple Hierarchical Model for ¢

+ + + + + Likelihood Fit

b 95% Credible Interval

0.6
[
i

0.4

0.0
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Additional shrinkage due to regression

Full Hierarchical Model

+ 4+ ++ 4+ + Likelihood Fit
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Errors under simple hierarchical model for ¢;

Simple Hierarchical Model for c

+ 4+ Likelihood Fit +

95% Credible Interval

0.25
|

Conditional Posterior Standard Deviation of c;

0.00
|
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Reduced errors due to regression

Full Hierarchical Model

Likelihood Fit +

95% Credible Interval

0.25
1

0.05
1

Conditional Posterior Standard Deviation of c;
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Model Checking

We model:
mg; = 9(2i, Q. Qu, Ho) — axi + Sci + M
How good of a fit is the cosmological model,
9(2i, Qp, Qu, Ho) ?

We can check the model by adding a cubic spline term:
mg; = g(2j, Q. Qu, Ho) + h(2;) + M} — ax; + Bei + M}

where, h(z;) is cubic spline term with K knots.
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Model Checking

Fitted cubic spline, h(z), and its errors:

Cubic Spline Curve Fitting (K=9)

Cubic Spline Curve Fitting (K=4)

T
o2 06
2z (red shift)

Hmea = Hing
o
IS

T T
0.2 0.6
z (red shift)

Can use similar methods to compare with
competing cosmological models.

Bayesian Astrostatistics: Part IIl
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Discussion

@ Estimation of groups of parameters describing populations
of sources not uncommon in astronomy.

@ These parameters may or may not be of primary interest.

@ Modeling the distribution of object-specific parameters can
dramatically reduce both error bars and MSE ...

@ ... especially with noisy observations of similar objects.
@ Shrinkage estimators are able to “borrow strength”.

Don’t throw away half of your toolkit!!
(Bayesian and Frequency methods)
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Outline

e Extended Modeling Examples
@ Hierarchical Model: Using SNIa to Fit Cosmological
Parameters
@ A Multi-Level Models for X-ray Image Analysis
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X-ray Image Analysis

NGC 6240

@ Photon counts in each of a large number of image pixels.
@ We use Poisson models for the photon counts.
@ Blurring, detector sensitivity, background contamination.
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X-ray Image Analysis

Optical and (smoothed) X-ray Images of NGC 6240:

HussLE OPTICAL CHANDRA X-RAY

David A. van Dyk Bayesian Astrostatistics: Part IIl
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Hierarchical Model: Using SNIa to Fit Cosmological Parameters
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Bayesian Deconvolution

Blurring Matrix
* known from

Source
Model

callibration

)\=P?Axu+€,

Non-Homogeneous Background
Expected Stochastic Contamination
Photon Censoring * often fit using
Count * known from background
callibration observation

@ Pixel counts: Y; """ PoISsON()), for i =1,...,n.

@ P is the point spread function.

@ A describes detector sensitivity.

@ ¢is an n x 1 vector of expected background counts.
@ . is the image of the astronomical source.

Bayesian Astrostatistics: Part IIl
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A Model for the Source Image

A useful model for the source image, © must allow for
@ Known or presumed structures such as point sources for
concentrated X-ray emitters.
@ Irregular and unpredictable structure in extended emission.

We may want to conduct a statistical tests for
evidence of an extended source.

David A. van Dyk Bayesian Astrostatistics: Part IIl
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A Smoothing Prior for the Extended Source

Imagine counts not subject to blurring, detector sensitivity, or background:

Z " PoIssON(y,), for i=1,...,n.

The Nowak-Kolaczyk Multiscale Model:

Low Resolution High Resolution

Z1. Z9. 211 | 212 || 221 | 22

2. Z13 | 214 | 723 | 224
— —

zZ3. Z4. 231 | 232 || 741 | 242

233 | 734 || 743 | %44

z.. ~ Poisson(yu) z.|z.. ~ Multinomial(p, ) 2;,|zi. ~ Multinomial(p,;)
p ~ Gamma{(ao, 31)} p; ~ Dirich.{(a1, a1, 1, 01)} Po; ~ Dirich.{(az2, a2, as, a2)}
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The Dirichlet Prior Distribution

The Nowak-Kolaczyk Multiscale Model:

Low Resolution High Resolution

2. 2. 211 | 212 || 221 | 222

z. 213 | 214 || 223 | 224
— —

Z3. Z4. 231 | 432 || Z41 | F42

233 | %34 || %43 | 244

z.. ~ Poisson(p) z,.|z.. ~ Multinomial(p, ) 2;,|z. ~ Multinomial(p,;)
1~ Gamma{(ao, 51)} py ~ Dirich.{(a1, a1, a1, 1)} Py; ~ Dirich.{(az, a2, a2, a2)}

@ The Dirichlet is a generalization of the beta distribution.

@ It is the conjugate prior for a multinomial probability vector.

@ The Dirchlet priors on p in the Nowak-Kolaczyk model
have expected value (0.25,0.25,0.25,0.25).

@ This choice of prior favors a smooth reconstructed image.

David A. van Dyk Bayesian Astrostatistics: Part IIl



Hierarchical Model: Using SNIa to Fit Cosmological Parameters
Extended Modeling Examples A Multi-Level Models for X-ray Image Analysis

Interpreting the Smoothing Parameters

The Multiscale prior is specified in terms of the Dirichlet
smoothing hyperparameters: (a4, ag, ..., ak).

@ Different values at each level of resolution.

@ Larger a, encourage more smoothing (“prior counts”).

@ We put a hierarchical prior on these smoothing parameters.

Using binary splits and the beta distribution for illustration:

2 3 4 5 6

1

0

David A. van Dyk Bayesian Astrostatistics: Part IIl



Hierarchical Model: Using SNIa to Fit Cosmological Parameters
Extended Modeling Examples A Multi-Level Models for X-ray Image Analysis

Fitting the Smoothing Parameters

We use a common prior on the smoothing parameters.

@ Too much mass near zero leads to numerical instability.
(Priors that put all mass in one quadrant.)

@ Too much mass far from
zero results in too much
smoothing.

exp(-a) exp(=a®)

o A Compromise: T T T T T T T T T T T 1

0.0 05 1.0 1.5 20 25 3.0 00 05 1.0 15 20 25 3.0

Qe ~ eXp(—5a3/3) aexp(=a) exp(=a’)

@ Exact shape of the prior
matters less than its
general features. T T T

0.0 05 1.0 1.5 20 25 3.0 00 05 1.0 15 20 25 3.0
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Summary of the Hierarchical / Multilevel Model

Level 1: Blurring, varying Sensitivity, and Background:
A=PAp+¢

Level 2: The image, p, combines known features and a
multiscale model for unknown features.

Level 3: The flexible multiscale model parameterized via a
nested set of 2 by 2 tables.

Level 4: The smoothing prior shrinks the probailites in the
tables toward (0.25,0.25,0.25.0.25).

Py ~ Dirich.{(ak, ak, ak, ak)}

The degree of smoothing is governed by the a.
Level 5: Fit the smoothing parameters hierarchically, tuning
their prior for good performance: ax ~ exp(—d§a?/3).
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Results

original EMC?2 image

R-L 20 iterations R-L 100 iterations

David A. van Dyk Bayesian Astrostatistics: Part IIl
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Results

original EMC?2 image

EMC?2 significance map: 3 sigma EMC?2 significance map: 1 sigma

David A. van Dyk Bayesian Astrostatistics: Part IIl



Hierarchical Model: Using SNIa to Fit Cosmological Parameters
Extended Modeling Examples A Multi-Level Models for X-ray Image Analysis

RESIS

Chandra (blue) and HST H-alpha (red)

original EMC2

3Esch, D. N., Connors, A., Karovska, M., and van Dyk, D. A. (2004). An Image Reconstruction Technique with

Error Estimates. The Astrophysical Journal, 610, 1213-12
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Thanks...
Stellar Evolution: X-ray Image Analysis:
@ Nathan Stein @ David Esch (original work)
@ David Stenning @ Nathan Stein (recent work)
@ Shijing Si @ Alanna Connors
@ Elizabeth Jeffery @ Vinay Kashyap
@ William H. Jefferys @ Aneta Siegminowska
@ Ted von Hippel
And
SNla Cosmology: The CHASC International
@ Xiyun Jiao AstroStatistics Collaboration

@ Hikmatali Shariff
@ Roberto Trotta
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