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Recall Simple Multilevel Model

Example: Background contamination in a single bin detector

Contaminated source counts: y � yS � yB

Background counts: x
Background exposure is 24 times source exposure.

A Poisson Multi-Level Model:
LEVEL 1: y |yB, λS

dist
� PoissonpλSq � yB,

LEVEL 2: yB|λB
dist
� PoispλBq and x |λB

dist
� PoispλB � 24q,

LEVEL 3: specify a prior distribution for λB, λS.

Each level of the model specifies a dist’n given unobserved
quantities whose dist’ns are given in lower levels.
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Multi-Level Models

Definition
A multi-level model is specified using a series of conditional
distributions. The joint distribution can be recovered via the
factorization theorem, e.g.,

pXYZ px , y , z|θq � pX |YZ px |y , z, θ1q pY |Z py |z, θ2q pZ pz|θ3q.

This model specifics the joint distribution of X , Y , and Z ,
given the parameter θ � pθ1, θ2, θ3q.
The variables X ,Y , and Z may consist of observed data,
latent variables, missing data, etc.
In this way we can combine models to derive an endless
variety of multi-level models.

David A. van Dyk Bayesian Astrostatistics: Part III



uci

Model Building
Extended Modeling Examples

Multi-Level Models
Example: Selection Effects
Hierarchical Models and Shrinkage

Example: High-Energy Spectral Modeling
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A Multilevel Model for Selection Effects
We wish to estimate a dist’n of absolute magnitudes, Mi ,

Suppose Mi � NORMpµ, σ2q, for i � 1, . . . ,n;

But Mi is only observed if Mi   F pziq
1;

Observe Np  nq objects including zi , θ � pµ, σ2q estimated.

(For µ � �19.3 and σ � 1.)

1
Mi observed if   Fpzi q � 24�µpzi q; µpzi q from Λ-CDM model (Ωm � 0.3, Ωκ � 0, H0 � 67.3km/s/Mpc).
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Model 1: Ignore Selection Effect

Likelihood: Mi |θ, zi � NORMpµ, σ2q, for i � 1, . . . ,N;

Prior: µ � NORMpµ0, τ
2q, and σ2 � β2{χ2

ν ;

Posterior: µ | pM1, . . .Mn, σ
2q � NORMp�, �q and

.

σ2 | pM1, . . .Mn, µq � �{χ2
(Details on next slide.)

Definition
If (some set of) conditional distributions of the prior and the
posterior distributions are of the same family, the prior dist’n is
called that likelihood’s semi-congutate prior distribution.

Semi-conjugate priors are very amenable to the Gibbs sampler.
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Gibbs Sampler for Model 1

Step 1: Update µ from its conditional posterior dist’n given σ2:

µpt�1q � NORM
�
µ̄, s2

µ

	
with
µ̄ �

�°N
i�1 Mi

pσ2q
ptq � µ0

τ2

	M�
N

pσ2q
ptq �

1
τ2

	
; s2

µ �
�

N
pσ2q

ptq �
1
τ2

	�1
.

Step 2: Update σ2 from its conditional posterior dist’n given µ:

pσ2q
pt�1q

�

�
Ņ

i�1

�
Mi � µpt�1q�2

� β2

�L
χ2

N�ν .

In this case, resulting sample is nearly independent.
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A Closer Look at Conditional Posterior: Step 1

Given σ2:
Likelihood: Mi |θ, zi � NORMpµ, σ2q, for i � 1, . . . ,N;

Prior: µ � NORMpµ0, τ
2q

Posterior: µ | pM1, . . .Mn, σ
2q � NORMpµ̄, s2

µq with

µ̄ �

�°N
i�1 Mi

σ2 �
µ0

τ2

�M� N
σ2 �

1
τ2



; s2

µ �

�
N
σ2 �

1
τ2


�1

.

Posterior mean is a weighted average of sample mean
( 1

N
°N

i�1 Mi ) and prior mean (µ0), with weights N
σ2 and 1

τ2 .

Compare s2
µ with Var

�
1
N
°N

i�1 Mi

	
� σ2

N .

Reference prior sets µ0 � 0 and τ2 � 8. (Improper and flat on µ.)
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A Closer Look at Conditional Posterior: Step 2

Given µ:

Likelihood: Mi |θ, zi � NORMpµ, σ2q, for i � 1, . . . ,N;

Prior: σ2 � β2{χ2
ν ;

Posterior:

pσ2q
pt�1q

| pM1, . . .Mn, µq �

�
Ņ

i�1

�
Mi � µpt�1q�2

� β2

�M
χ2

N�ν .

The prior has the affect of adding ν additional data points
with variance β2.
Reference prior sets ν � β2 � 0. (Improper and flat on logpσ2q.)
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Model 2: Account for Selection Effect

Likelihood: The distribution of the observed magnitudes:

ppMi |Oi � 1, θ, ziq �
PrpOi � 1|Mi , zi , θqppMi |θ, ziq³

PrpOi � 1|Mi , zi , θqppMi |θ, ziqdMi
;

Here
Mi |θ, zi � NORMpµ, σ2q and
PrpOi � 1|Mi , zi , θqq � PrpMi   F pziq|θq

So Mi |pOi � 1, θ, ziq � TRUNNORMrµ, σ2; F pziqs.

Prior: µ � NORMpµ0, τ
2q, σ2 � β2{χ2

ν ;

Posterior: Prior is not conjugate, posterior is not standard.
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MH within Gibbs for Model 2

Neither step of the Gibbs Sampler is a standard dist’n:

Step 1: Update µ from its conditional dist’n given σ2

Use Random-Walk Metropolis with a
NORMpµptq, s2

1q proposal distribution.

Step 2: Update σ2 from its conditional dist’n given µ

Use Random-Walk Metropolis Hastings with a
LOGNORM

�
log
�
σ2 ptq

�
, s2

2

�
proposal distribution.

Adjust s2
1 and s2

2 to obtain an acceptance rate of around 40%.
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Simulation Study I

Sample Mi � NORMpµ � �19.3, σ � 1) for i � 1, . . . ,200.
Sample zi from ppzq9p1 � zq2, yielding N � 112.
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Simulation I (µ0 � �19.3, σm � 20, ν � 0.02, β2 � 0.02)
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Simulation Study II

Sample Mi � NORMpµ � �19.3, σ � 3) for i � 1, . . . ,200.
Sample zi from ppzq9p1 � zq2, yielding N � 101.
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Simulation II (µ0 � �19.3, σm � 20, ν � 0.02, β2 � 0.02)
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Frequentists Origins of Hierarchical Models

Suppose we wish to estimate a parameter, θ, from repeated
measurements:

yi
indep
� NORMpθ, σ2q for i � 1, . . . ,n

E.g.: calibrating a detector from n measures of known source.

An obvious estimator:

θ̂naive �
1
n

ņ

i�1

yi

What is not to like about the arithmetic average?
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Frequency Evaluation of an Estimator

How far off is the estimator?

pθ̂ � θq2

How far off do we expect it to be?

MSEpθ̂|θq � E
�
pθ̂ � θq2 | θ

�
�

» �
θ̂pyq � θ

	2
fY py |θqdy

This quantity is called the Mean Square Error of θ̂.
An estimator is said to be inadmissible if there is an
estimator that is uniformly better in terms of MSE:

MSEpθ̂|θq   MSEpθ̂naive|θq for all θ.

David A. van Dyk Bayesian Astrostatistics: Part III
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MSE of Four Estimators of Binomial Probability

Recall Simulation Study:
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The MSE (of all four estimators) depends on true p.
In this case: no evidence of inadmissiblity.
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Inadmissibility of the Sample Mean

Suppose we wish to estimate more than one parameter:

yij
indep
� NORMpθj , σ

2q for i � 1, . . . ,n and j � 1, . . . ,G

The obvious estimator:

θ̂naive
j �

1
n

ņ

i�1

yij is inadmissible if G ¥ 3.

The James-Stein Estimator dominates θnaive:

θ̂JS
j �

�
1 � ωJS� θ̂naive

j � ωJSν for any ν

with ωJS �
σ2{n

σ2{n � τ2
ν

and τ2
ν � Erpθi � νq2s.

Specifically, ωJS � pG � 2qσ2
M

n
°G

j�1pθ̂
naive
j � νq2.

David A. van Dyk Bayesian Astrostatistics: Part III
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Shrinkage Estimators

James-Stein Estimator is a shrinkage estimator:

θ̂JS
j �

�
1� ωJS

	
θ̂naive

j � ωJSν
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θj highly variable / data highly variable /
data very precise θj very similar (to ν)
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To Where Should We Shrink?

James-Stein Estimators
Dominate the sample average for any choice of ν.
Shrinkage is mild and θ̂JS � θ̂naive for most ν.
Can we choose ν to maximize shrinkage?

θ̂JS
j �

�
1 � ωJS� θ̂naive

j � ωJSν

with ωJS �
σ2{n

σ2{n � τ2
ν

and τ2
ν � Erpθi � νq2s.

Minimize τ2.

The optimal choice of ν is the average of the θj .

David A. van Dyk Bayesian Astrostatistics: Part III
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Illustration

Suppose:
yj � NORMpθj ,1q for j � 1, . . . ,10
θj are evenly distributed on [0,1]

MSEpθ̂naiveq versus MSEpθ̂JSq:

−4 −2 0 2 4

0
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4
6

8
10

ν

M
S

E
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Illustration

Suppose:
yj � NORMpθj ,1q for j � 1, . . . ,10
θj are evenly distributed on [-4,5]

MSEpθ̂naiveq versus MSEpθ̂JSq:
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Intuition

1 If you are estimating more than two parameters, it is
always better to use shrinkage estimators.

2 Optimally shrink toward average of the parameters.
3 Most gain when the naive (non-shrinkage) estimators

are noisy (σ2 is large)
are similar (τ2 is small)

4 Bayesian versus Frequentist:
From frequentist point of view this is somewhat problematic.
From a Bayesian point of view this is an opportunity!

5 James-Stein is a milestone in statistical thinking.
Results viewed as paradoxical and counterintuitive.
James and Stein are geniuses.

David A. van Dyk Bayesian Astrostatistics: Part III
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Bayesian Perspective

Frequentist tend to avoid quantities like:
1 Epθjq and Varpθjq

2 E
�
pθj � νq2

�
From a Bayesian point of view it is quite natural to consider

1 the distribution of a parameter or
2 the common distribution of a group of parameters.

Models that are formulated in terms of the latter are
Hierarchical Models.

David A. van Dyk Bayesian Astrostatistics: Part III



uci

Model Building
Extended Modeling Examples

Multi-Level Models
Example: Selection Effects
Hierarchical Models and Shrinkage

A Simple Bayesian Hierarchical Model

Suppose

yij |θj
indep
� NORMpθj , σ

2q for i � 1, . . . ,n and j � 1, . . . ,G

with
θj

indep
� NORMpµ, τ2q.

Let φ � pσ2, τ2, µq

Epθj | Y , φq � p1 � ωHBqθ̂naive � ωHBµ with ωHB �
σ2{n

σ2{n � τ2 .

The Bayesian perspective
automatically picks the best ν,
provides model-based estimates of φ,
requires priors be specified for σ2, τ2, and µ.

David A. van Dyk Bayesian Astrostatistics: Part III
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Color Correction Parameter for SNIa Lightcurves

SNIa light curves vary systematically across color bands.
Color Correction: Measure the peakedness of color dist’n.
Details in the next section!!
A hierarchical model:

ĉj |cj
indep
� NORMpcj , σ

2
j q for j � 1, . . . ,288

with
cj

indep
� NORMpc0,R2

c q and ppc0,Rcq91.

The measurement variances, σ2
j are assumed known.

We could estimate each cj via ĉj � σj , or...

David A. van Dyk Bayesian Astrostatistics: Part III
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Fitting the Hierarchical Model with Gibbs Sampler

ĉj |cj
indep
� NORMpcj , σ

2
j q for j � 1, . . . ,G

cj
indep
� NORMpc0,R2

c q and ppc0,Rcq91.

To Derive the Gibbs Sampler Note:

1 Given pc0,R2
Cq, a standard Gaussian model for each j :

ĉj |cj
indep
� NORMpcj , σ

2
j q with cj

indep
� NORMpc0,R2

c q.

2 Given c1, . . . , cG, another standard Gaussian model:

cj
indep
� NORMpc0,R2

c q with ppc0,Rcq91.

David A. van Dyk Bayesian Astrostatistics: Part III
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Fitting the Hierarchical Model with Gibbs Sampler

The Gibbs Sampler:

Step 1: Sample c1, . . . cG from their joint posterior given pc0,R2
Cq:

cptqj

��� pĉj , c
pt�1q
0 , pR2

Cq
pt�1qq � NORM

�
µj , s2

j
�

µj �
�

ĉj

σ2
j
�

cpt�1q
0

pR2
Cq
pt�1q

	M�
1
σ2

j
� 1

pR2
Cq
pt�1q

	
; s2

j �
�

1
σ2 �

1
pR2

Cq
pt�1q

	�1
.

Step 2: Sample pc0,R2
Cq from their joint posterior given c1, . . . cG :

pR2
Cq

ptq
��pcptq1 , . . . , cptqG q �

°G
j�1pc

ptq
j � c̄q2

χ2
G�2

with c̄ �
1
G

Ģ

j�1

cptqj

cptq0

��pcptq1 , . . . , cptqG q, pR2
Cq

ptq � NORM
�

c̄, pR2
Cq

ptq{G
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Shrinkage of the Fitted Color Correction
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Pooling may dramatically change fits.
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Standard Deviation of the Fitted Color Correction
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Borrowing strength for more precise estimates.
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The Bayesian Perspective

Advantages of Bayesian Perspective:
The advantage of James-Stein estimation is automatic.
James and Stein had to find their estimator!
Bayesians have a method to generate estimators.
Even frequentists like this!
General principle is easily tailored to any problem.
Specification of level two model may not be critical.
James-Stein derived same estimator using only moments.

Cautions:
Results can depend on prior distributions for parameters
that reside deep within the model, and far from the data.
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The Choice of Prior Distribution

Suppose

yij |θj
indep
� NORMpθj , σ

2q for i � 1, . . . ,n and j � 1, . . . ,G

with
θj

indep
� NORMpµ, τ2q.

Reference prior for normal variance: ppσ2q91{σ2, flat on logpσ2q

Using this prior for the level-two variance,

ppτ2q91{τ2

leads to an improper posterior distribution:

ppτ2|yq9ppτ2q

d
Varpµ|y , τq
pσ2 � τ2qG

exp

$&
%

Ģ

j�1

�
pȳ�j � Epµ|y , τ2qq2

2pσ2 � τ2q

,.
-
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Type Ia Supernovae as Standardizable Candles

If mass surpasses “Chandrasekhar threshold” of 1.44M@...

Image Credit: http://hyperphysics.phy-astr.gsu.edu/hbase/astro/snovcn.html

Due to their common “flashpoint”, SN1a have similar absolute
magnitudes:

Mj � NORMpM0, σ
2
intq.
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Predicting Absolute Magnitude

SN1a absolute magnitudes are correlated with characteristics
of the explosion / light curve:

xj : rescale light curve to match mean template

cj : describes how flux depends on color (spectrum)

Credit: http://hyperphysics.phy-astr.gsu.edu/hbase/astro/snovcn.html
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Phillips Corrections

Recall:
Mj � NORMpM0, σ

2
intq.

Regression Model:
Mj � �αxj � βcj � Mε

j ,

with Mε
j � NORMpM0, σ

2
ε q.

σ2
ε ¤ σ2

int

Including xi and ci reduces
variance and increases
precision of estimates.

Roberto Trotta ADA VII, May 2012
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Even SN with low extinction benefit from observations in
the H-band by reducing the uncertainty in the dust es-
timate. Table 4 lists summary statistics of the marginal
posterior distribution of each host galaxy dust parameter
for each SN, obtained from the MCMC samples.

5.2. Intrinsic Correlation Structure of SN Ia Light
curves in the Optical-NIR

We use the hierarchical model to infer the intrinsic
correlation structure of the absolute SN Ia light curves.
This correlation structure captures the statistical rela-
tionships between peak absolute magnitudes and decline
rates of light curves in multiple filters at different wave-
lengths and phases. We summarize inferences about light
curve shape and luminosity across the optical and near
infrared filters; a more detailed analysis of the intrin-
sic correlation structure of colors, luminosities and light
curve shapes will be presented elsewhere.

5.2.1. Intrinsic Scatter Plots

The hierarchical model fits the individual light curves
with the differential decline rates model and infers the
absolute magnitudes in multiple passbands, corrected for
host galaxy dust extinction. For each individual SN light
curve, we can use the inferred local decline rates dF to
compute the ∆m15(F ) of the light curve in each filter. In
the left panel of Figure 4, we plot the posterior estimate
of the peak absolute magnitude MB versus its canoni-
cal ∆m15(B) decline rate with black points. The error
bars reflect measurement errors and the marginal uncer-
tainties from the distance and inferred dust extinction.
This set of points describes the well-known intrinsic light
curve decline rate versus luminosity relationship (Phillips
1993). We also show the mean linear relation between
MB and ∆m15(B) found by Phillips et al. (1999), who
analyzed a smaller sample of SN Ia. The statistical trend
found by our model is consistent with that analysis. The
red points are simply the peak apparent magnitudes mi-
nus the distance moduli, B0 − µ, which are the extin-
guished peak absolute magnitudes MB + AB. Whereas
the range of extinguished magnitudes spans ∼ 3 magni-
tudes, the intrinsic absolute magnitudes lie along a nar-
row, roughly linear trend with ∆m15(B).

In the right panel, we plot the intrinsic and ex-
tinguished absolute magnitudes of SN Ia in the H-
band. In contrast to the left panel, the differences
between the intrinsic absolute magnitudes and the ex-
tinguished magnitudes are nearly negligible. Notably,
there is no correlation between the intrinsic MH in
the NIR and optical ∆m15(B). This was noted previ-
ously by Krisciunas et al. (2004a) and Wood-Vasey et al.
(2008). The standard deviation of absolute magnitudes
is much smaller in H than in B, demonstrating that
the NIR SN Ia light curves are good standard can-
dles (Krisciunas et al. 2004a,c; Wood-Vasey et al. 2008;
Mandel et al. 2009). Theoretical models of Kasen (2006)
indicate that NIR peak absolute magnitudes have rela-
tively weak sensitivity to the input progenitor 56Ni mass,
with a dispersion of ∼ 0.2 mag in J and K, and ∼ 0.1
mag in H over models ranging from 0.4 to 0.9 solar
masses of 56Ni. The physical explanation may be traced
to the ionization evolution of the iron group elements in
the SN atmosphere.

0.8 1 1.2 1.4 1.6
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B0−µ
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Fig. 4.— (left) Post-maximum optical decline rate ∆m15(B) ver-
sus posterior estimates of the inferred optical absolute magnitudes
MB (black points) and the extinguished magnitudes B0 − µ (red
points). Each black point maps to a red point through optical
dust extinction in the host galaxy. The intrinsic light curve width-
luminosity Phillips relation is reflected in the trend of the black
points, indicating that SN brighter in B have slower decline rates.
The blue line is the linear trend of Phillips et al. (1999). (right)
Inferred absolute magnitudes and extinguished magnitudes in the
near infrared H-band. The extinction correction, depicted by the
difference between red and black points, is much smaller in H than
in B. The absolute magnitudes MH have no correlation with the
∆m15(B). The standard deviation of peak absolute magnitudes is
also much smaller for MH compared to MB .

These scatter plots convey some aspects of the popu-
lation correlation structure of optical and near infrared
light curves that is captured by the hierarchical model.
In the next section, we further discuss the multi-band
luminosity and light curve shape correlation structure in
terms of the estimated correlation matrices.

Figure 5 shows scatter plots of optical-near infrared
colors (B−H, V −H, R−H, J −H) versus absolute mag-
nitude (MB, MV , MR, MH) at peak. The blue points are
the posterior estimates of the inferred peak intrinsic col-
ors and absolute magnitudes of the SN, along with their
marginal uncertainties. Red points are the peak apparent
colors and extinguished absolute magnitudes, including
host galaxy dust extinction and reddening. These plots
show correlations between the peak optical-near infrared
colors and peak optical luminosity, in the direction of in-
trinsically brighter SN having bluer peak colors. In con-
trast, the intrinsic J − H colors have a relatively narrow
distribution, and the near infrared absolute magnitude
MH is uncorrelated with intrinsic J − H color.

5.2.2. Intrinsic Correlation Matrices

Using the hierarchical model, we compute posterior in-
ferences of the population correlations between the dif-
ferent components of the absolute light curves of SN Ia.
This includes population correlations between peak ab-
solute magnitudes in different filters, ρ(MF , MF ′), cor-
relations between the peak absolute magnitudes and
light curve shape parameters (differential decline rates)

in different filters, ρ(MF , dF ′
), and the correlations be-

tween light curve shape parameters in different filters,
ρ(dF , dF ′

). They also imply correlations between these
quantities and intrinsic colors. This information and its
uncertainty is captured in the posterior inference of the
population covariance matrix Σψ of the absolute light

M
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20
11

)

Light curve stretch

Before dust 
correction

After dust 
correction

Low-z calibration sample

Brighter SNIa are slow decliners

B band

V band

I band
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Brighter SNIa are slower decliners over time.
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Distance Modulus in an Expanding Universe

Apparent mag depends on absolute mag & distance modulus:

mBj � µj � Mj � µj � Mε
j � αxj � βcj

Relationship between µi and zi

For nearby objects,
zj � velocity{c

velocity � H0 distance.
(Correcting for peculiar/local velocities.)

For distant objects, involves
expansion history of Universe:

µj � gpzj ,ΩΛ,ΩM ,H0q
. � 5 log10pdistancerMpcsq � 25

We use peak B band magnitudes.
http://skyserver.sdss.org/dr1/en/astro/universe/universe.asp
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Accelerating Expansion of the Universe

2011 Physics Nobel Prize:
discovery that expansion
rate is increasing.
Dark Energy is the
principle theorized
explanation of accelerated
expansion.
ΩΛ: density of dark energy

(describes acceleration).

ΩM : total matter.

5/12/14, 6:08 PM

Page 1 of 1file:///Users/dvd/my-files/Research%20and%20Writing/Astronomy/Ove…Talks:Posters/Cosmo%20-%20Lisbon%202014/Figures/evol_model-2.svg
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A Hierarchical Model

Level 1: cj , xj , and mBj are observed with error.�
� ĉj

x̂j
m̂Bj

�
� NORM

$&
%
�
� cj

xi
mBj

�
, Ĉj

,.
- .

Level 2:
1 cj � NORMpc0,R2

c q
2 xj � NORMpx0,R2

x q
3 The conditional dist’n of mBj given cj and xj is specified via

mBj � µj � Mε
j � αxj � βcj ,

with µj � gpzj ,ΩΛ,ΩM ,H0q and Mε
j � NORMpM0, σ

2
ε q.

Level 3: Priors on α, β, ΩΛ, ΩM , H0, c0, R2
c , x0, R2

x M0, σ2
ε
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Regression With Measurement Errors

The above model encompasses measurement error model:

Level 1: cj , xj , and mBj are observed with error.
�
�

ĉj

x̂j

m̂Bj

�
� NORM

$&
%

�
�

cj

xj

mBj

�
, Ĉj

,.
- .

Level 2: [Omitting hierarchical and cosmological components]
The conditional dist’n of mBj given cj and xj is specified via

mBj � M0 � αxj � βcj �Mε
j with Mε

j � NORMp0, σ2
εq.

Level 3: Priors on M0, α, β, σ2
ε , and (hierarchical? on) cj and xj .

We can simply model the complexity and
fit the resulting model using MCMC.

David A. van Dyk Bayesian Astrostatistics: Part III



uci

Model Building
Extended Modeling Examples

Hierarchical Model: Using SNIa to Fit Cosmological Parameters
A Multi-Level Models for X-ray Image Analysis

Other Model Features

Results are based on an SDSS (2009) sample of 288 SNIa.

In our full analysis, we also
1 account for systematic errors that have the effect of

correlating observation across supernovae,
2 allow the mean and variance of Mε

i to differ for galaxies
with stellar masses above or below 1010 solar masses,

3 include a model component that adjusts for selection
effects, and

4 use a larger JLA sample2 of 740 SNIa observed with
SDSS, HST, and SNLS.

2Betoule, et al., 2014, arXiv:1401.4064v1
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Shrinkage Estimates in Hierarchical Model
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Shrinkage Errors in Hierarchical Model
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Fitting Absolute Magnitudes Without Shrinkage

Under the model, absolute magnitudes are given by

Mε
j � mBj � µj � αxj � βcj with µi � gpzj ,ΩΛ,ΩM ,H0q

Setting
1 α, β,ΩΛ, and ΩM to their minimum χ2 estimates,
2 H0 � 72km{s{Mpc, and
3 mBj , xj , and cj to their observed values

we have

M̂ε
j � m̂Bi � gpẑj , Ω̂Λ, Ω̂M , Ĥ0q � α̂x̂j � β̂ĉj

with error

�

b
Varpm̂Bjq � α̂2Varpx̂jq � β̂2Varpĉjq
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Comparing the Estimates
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Comparing the Estimates
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Fitting a simple hierarchical model for ci
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Additional shrinkage due to regression
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Errors under simple hierarchical model for ci
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Reduced errors due to regression
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Model Checking

We model:

mBi � gpzi ,ΩΛ,ΩM ,H0q � αxi � βci � Mε
i

How good of a fit is the cosmological model,
gpzi ,ΩΛ,ΩM ,H0q?

We can check the model by adding a cubic spline term:

mBi � gpzi ,ΩΛ,ΩM ,H0q � hpziq � Mε
i � αxi � βci � Mε

i

where, hpziq is cubic spline term with K knots.
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Model Checking

Fitted cubic spline, hpzq, and its errors:
2.2 Nonparametric Regression:
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Figure 4: Nonparametric regression(K = 4).
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Figure 5: Nonparametric regression(K = 9).
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2.2 Nonparametric Regression:
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Figure 4: Nonparametric regression(K = 4).
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Figure 5: Nonparametric regression(K = 9).
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Can use similar methods to compare with
competing cosmological models.
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Model Building
Extended Modeling Examples

Hierarchical Model: Using SNIa to Fit Cosmological Parameters
A Multi-Level Models for X-ray Image Analysis

Discussion

Estimation of groups of parameters describing populations
of sources not uncommon in astronomy.
These parameters may or may not be of primary interest.
Modeling the distribution of object-specific parameters can
dramatically reduce both error bars and MSE ...
... especially with noisy observations of similar objects.
Shrinkage estimators are able to “borrow strength”.

Don’t throw away half of your toolkit!!
(Bayesian and Frequency methods)

David A. van Dyk Bayesian Astrostatistics: Part III
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Hierarchical Model: Using SNIa to Fit Cosmological Parameters
A Multi-Level Models for X-ray Image Analysis

Outline

1 Model Building
Multi-Level Models
Example: Selection Effects
Hierarchical Models and Shrinkage

2 Extended Modeling Examples
Hierarchical Model: Using SNIa to Fit Cosmological
Parameters
A Multi-Level Models for X-ray Image Analysis

David A. van Dyk Bayesian Astrostatistics: Part III
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Hierarchical Model: Using SNIa to Fit Cosmological Parameters
A Multi-Level Models for X-ray Image Analysis

X-ray Image Analysis original EMC2 image

R-L 20 iterations R-L 100 iterations

NGC 6240

Photon counts in each of a large number of image pixels.
We use Poisson models for the photon counts.
Blurring, detector sensitivity, background contamination.

David A. van Dyk Bayesian Astrostatistics: Part III
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Model Building
Extended Modeling Examples

Hierarchical Model: Using SNIa to Fit Cosmological Parameters
A Multi-Level Models for X-ray Image Analysis

X-ray Image Analysis

Optical and (smoothed) X-ray Images of NGC 6240:
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Hierarchical Model: Using SNIa to Fit Cosmological Parameters
A Multi-Level Models for X-ray Image Analysis

Bayesian Deconvolution

Blurring Matrix
* known from 
   callibration

Expected
Photon 
Count

Source 
Model

   

  

Stochastic 
Censoring
* known from 
   callibration

Background 
Contamination
* often fit using
   background 
   observation

Non−Homogeneous

Pixel counts: Yi
indep
� POISSONpλiq, for i � 1, . . . , n.

P is the point spread function.
A describes detector sensitivity.
ξ is an n � 1 vector of expected background counts.
µ is the image of the astronomical source.
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uci

Model Building
Extended Modeling Examples

Hierarchical Model: Using SNIa to Fit Cosmological Parameters
A Multi-Level Models for X-ray Image Analysis

A Model for the Source Image

A useful model for the source image, µ must allow for
1 Known or presumed structures such as point sources for

concentrated X-ray emitters.
2 Irregular and unpredictable structure in extended emission.

We may want to conduct a statistical tests for
evidence of an extended source.
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Hierarchical Model: Using SNIa to Fit Cosmological Parameters
A Multi-Level Models for X-ray Image Analysis

A Smoothing Prior for the Extended Source

Imagine counts not subject to blurring, detector sensitivity, or background:

Zi
indep
� POISSONpµiq, for i � 1, . . . , n.

5.4 Building Multi-Level Models 2: Image Analysis M5S06 Bayesian Data Analysis

µi = µES
i +

JX

j=1

µPS
j ⇡ij

• The point sources can be modeled as delta functions, Gaussians or Lorentzians. This is
parameterized by ⇡.

• We can add additional model components. For example, a jet can be modeled as a string
of elongated Gaussian distributions. (See image.)

A quasar with a jet:

A Smoothing Prior for the Extended Source

The Nowak-Kolaczyk Multiscale Model:

Low Resolution High Resolution

z·· �!
z1· z2·

z3· z4·
�!

z11 z12 z21 z22

z13 z14 z23 z24

z31 z32 z41 z42

z33 z34 z43 z44

z·· ⇠ Poisson(µ) z,·|z·· ⇠ Multinomial(p1) zi,|zi· ⇠ Multinomial(p2i)
µ ⇠ Gamma{(↵0,�1)} p1 ⇠ Dirich.{(↵1,↵1,↵1,↵1)} p2i ⇠ Dirich.{(↵2,↵2,↵2,↵2)}

Definition. Let ✓ be k ⇥ 1 vector with pdf

p(✓|⇠) =
�(⇠1 + · · · ⇠k)
�(⇠1) · · ·�(⇠k)

✓⇠1�1
1 · · · ✓⇠k�1

k

for ✓1, . . . ✓k � 0,
Pk

i=1 ✓k = 1 and for ⇠1, . . . ⇠k � 0. Then ✓ is said to follow a Dirichlet
distribuiton and

1. E(✓k) = ⇠k/⇠0 with ⇠0 =
Pk

i=1 ⇠k

2. Var(✓k) =
⇠j(⇠0 � ⇠j)

⇠20(⇠0 + 1)

42
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The Dirichlet Prior Distribution

5.4 Building Multi-Level Models 2: Image Analysis M5S06 Bayesian Data Analysis

µi = µES
i +

JX

j=1

µPS
j ⇡ij

• The point sources can be modeled as delta functions, Gaussians or Lorentzians. This is
parameterized by ⇡.

• We can add additional model components. For example, a jet can be modeled as a string
of elongated Gaussian distributions. (See image.)

A quasar with a jet:

A Smoothing Prior for the Extended Source

The Nowak-Kolaczyk Multiscale Model:

Low Resolution High Resolution

z·· �!
z1· z2·

z3· z4·
�!

z11 z12 z21 z22

z13 z14 z23 z24

z31 z32 z41 z42

z33 z34 z43 z44

z·· ⇠ Poisson(µ) z,·|z·· ⇠ Multinomial(p1) zi,|zi· ⇠ Multinomial(p2i)
µ ⇠ Gamma{(↵0,�1)} p1 ⇠ Dirich.{(↵1,↵1,↵1,↵1)} p2i ⇠ Dirich.{(↵2,↵2,↵2,↵2)}

Definition. Let ✓ be k ⇥ 1 vector with pdf

p(✓|⇠) =
�(⇠1 + · · · ⇠k)
�(⇠1) · · ·�(⇠k)

✓⇠1�1
1 · · · ✓⇠k�1

k

for ✓1, . . . ✓k � 0,
Pk

i=1 ✓k = 1 and for ⇠1, . . . ⇠k � 0. Then ✓ is said to follow a Dirichlet
distribuiton and

1. E(✓k) = ⇠k/⇠0 with ⇠0 =
Pk

i=1 ⇠k

2. Var(✓k) =
⇠j(⇠0 � ⇠j)

⇠20(⇠0 + 1)

42

The Dirichlet is a generalization of the beta distribution.
It is the conjugate prior for a multinomial probability vector.
The Dirchlet priors on p in the Nowak-Kolaczyk model
have expected value p0.25,0.25,0.25,0.25q.
This choice of prior favors a smooth reconstructed image.
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Interpreting the Smoothing Parameters

The Multiscale prior is specified in terms of the Dirichlet
smoothing hyperparameters: pα1, α2, . . . , αK q.

Different values at each level of resolution.
Larger αk encourage more smoothing (“prior counts”).
We put a hierarchical prior on these smoothing parameters.

Using binary splits and the beta distribution for illustration:

p
0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

alpha = 0.1

alpha = 2

alpha = 20
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Fitting the Smoothing Parameters

We use a common prior on the smoothing parameters.
Too much mass near zero leads to numerical instability.
(Priors that put all mass in one quadrant.)

Too much mass far from
zero results in too much
smoothing.

A compromise:
αk � expp�δα3{3q

Exact shape of the prior
matters less than its
general features.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

exp(− α)

α

0.0 0.5 1.0 1.5 2.0 2.5 3.0

exp(− α2)

α

0.0 0.5 1.0 1.5 2.0 2.5 3.0

αexp(− α)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

exp(− α3)
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Summary of the Hierarchical / Multilevel Model

Level 1: Blurring, varying Sensitivity, and Background:

λ � PAµ� ξ

Level 2: The image, µ, combines known features and a
multiscale model for unknown features.

Level 3: The flexible multiscale model parameterized via a
nested set of 2 by 2 tables.

Level 4: The smoothing prior shrinks the probailites in the
tables toward p0.25,0.25,0.25.0.25q.

pk � Dirich.tpαk , αk , αk , αk qu

The degree of smoothing is governed by the αk .
Level 5: Fit the smoothing parameters hierarchically, tuning

their prior for good performance: αk � expp�δα3{3q.
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Results

original EMC2 image

R-L 20 iterations R-L 100 iterations

David A. van Dyk Bayesian Astrostatistics: Part III



uci

Model Building
Extended Modeling Examples

Hierarchical Model: Using SNIa to Fit Cosmological Parameters
A Multi-Level Models for X-ray Image Analysis

Results

EMC2 image

EMC2 significance map: 3 sigma3 sigma EMC2 significance map:1 sigma1 sigma

original
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Results
3

Chandra (blue) and HST H-alpha (red)

original EMC2

2”

3
Esch, D. N., Connors, A., Karovska, M., and van Dyk, D. A. (2004). An Image Reconstruction Technique with

Error Estimates. The Astrophysical Journal, 610, 1213–1227.
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Thanks...

Stellar Evolution:
Nathan Stein
David Stenning
Shijing Si
Elizabeth Jeffery
William H. Jefferys
Ted von Hippel

SNIa Cosmology:
Xiyun Jiao
Hikmatali Shariff
Roberto Trotta

X-ray Image Analysis:
David Esch (original work)
Nathan Stein (recent work)
Alanna Connors
Vinay Kashyap
Aneta Siegminowska

And

The CHASC International
AstroStatistics Collaboration
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