

Young stellar clusters
Edvige Corbelli (in collaboration with Marco Grossi, Carlo Giovanardi, Simon Verley)

Star forming regions in M33: Observable over 4 orders of magnitude in L

1. Embedded phase

•Thermal radio continuum: free free emission from ionized gas. *Non-thermal emission*Timescales: 0-5 Myr

(Negative result by Buckalew et al. 2006 suggest to use MIR).

•Dust emission: thermal IR emission from dust grains . *Dust abundance, evolved stars*.

Timescales: 0-10 Myr + 0-10 Gyr

2. Young phase

- •UV continuum emission stellar radiation from young massive stars. *Extinction-age degeneracy*.

 Timescales: 0-200 Myr
- •Emission lines: nebular emission from HII regions powered by massive stars. *Leakage, stochastic IMF.*Timescales: 0-5 Myr

The Local Group Power: resolving individual SF sites

- ■500 sources extracted from 24μm Spitzer map of M33
- ■None of GMCs have IR sources with no Hα
- ■Half of 500 sources have Hα counterpart
- ■What are the other half?
- •The scatter between F(Hα) and F(24) is large and increases towards faint sources

$Log N (F>F_0)$

Log L(TIR) ergs/s

1. Embedded phase

IRAM-30m deep observations of 20 isolated sources

- -14 with H α counterpart have detectable CO lines (filled symbols)
- -4 with no H α counterpart have no or dim CO lines (open circles)
- -CO mass correlated with cluster age
- -IRAC colors can be used to find clusters associated with MCs
- -Clouds properties change radially (GMCs are not ubiquitous). The CO J=2-1/1-0 ratio varies around SF sites!

NO deeply embedded clusters found!

2. Young phase

The IMF and the cluster birthline

- Can L(TIR) be close to L(Bol) as for embedded clusters?
- Young faint clusters should follow a non linear relation L(Bol)-L(H α) IMF dependent. UV colors confirm their young ages

(from Corbelli, Verley, Elmegreen, Giovanardi 2009 A&A 495, 479).

Clusters are below the birthline! => L (Bol) > L (TIR); next step: add GALEX luminosities!

- •Upper end Salpeter OK, in clusters IMF is stochastically sampled!
- •Low & patchy dust/gas ratio requires multiwavelength analysis. MCs are small and fade away easily
- •O3 seems the most massive stars in M33 clusters

2. Young phase

Fits to the Spectral Energy Distribution

Sample selection: $H\alpha$ emitters, known metallicity, $24\mu m$ counterpart Method: SED model fitting, from UV to mid-IR. Single burst model Results: stellar masses, ages, metallicity, extinction, bolometric L

32 Clusters selected

Visual Extinction: $0.2 \rightarrow 1.2 \text{ mag}$

Masses: $500 \rightarrow 10^5$ Msun

Non shocking relations......

 $M = C R^3 => constant density$

Extinction decreases with cluster age

.....Shocking relations and non-relations

 A_{FUV} does NOT correlates with L_{24} / L_{bol} , N_{HI} , Z, d

 L_{mid-IR} / L_{FUV}^{0} , $L_{H\alpha}^{0}$ / L_{Bol} correlates with d! But

Hα emission is much lower than SED models predicts! IR emission is too low compared to derived extinction!

Many ionizing photons are missing, especially in young clusters

$$L_{IR}$$
 (12xL_{MIR}) low => A^0_{FUV} << A_{FUV}
 L_{bol} >> L_{FUV} + L_{NUV} + L_{IR}

Leakage or wrong IMF?

Leakage:

It explains the high diffuse fraction in the disk and the low IR emission

Leakage:

It should increase with age
It is stronger than model predicts

IMF:

If massive stars are missing models overestimate extinction!
HII extinction decreases with d.

IMF:

Stochstic effects? Most of our clusters should have a complete IMF
Steeper? It does not explain the trend with age

The age problem can be solved if there is a delayed formation of the most massive stars

In any case the solution implies very small dust masses around young clusters

Open questions:

- •Is there an embedded phase in SF regions of M33? How to find it?
- •Can we sample the Cluster Birthline to see if small clusters form outliers?
- •What are the MIR sources with no H α emission?
- •What to use as local SFR indicator?