Metallicity gradients, 2D maps and chemical evolution

Laura Magrini INAF-Osservatorio Astrofisico di Arcetri

> with D. Galli, E. Corbelli, INAF-Osservatorio di Arcetri L. Stanghellini (NOAO), E. Villaver (U. Madrid)

The metallicity distribution (from spectroscopy)

- Why metallicity: chemical evolution, integrated star formation, nucleosynthesis processes
- The study of the metallicity in M33 from HII regions: a long history starting from the 70s (e.g. Smith 1975, Kwitter & Aller 1981, Vilchez et al. 1988) indicating a consistent O/H gradient of about -0.1 dex/kpc

Recent results from individual object spectroscopy:

- Infrared and optical spectroscopic observations of HII regions found a flatter radial metallicity distribution (e.g., Crockett et al. 2006, Magrini et al. 2007, Rosolowsky & Simon 2008, Rubin et al. 2008, Magrini et al. 2009 in prep)
- Spectroscopy of Planetary Nebulae (Magrini, Stanghellini, Villaver 2009) found a similar gradient
- Spectroscopy AB super-giant stars (e.g., Urbaneja et al. 2005, U et al. 2009) similar gradient, but different central metallicity

0. Introduction

Outline:

What does the metallicity gradient (and its change with time) tell us about the formation and evolution of M33?

Method

- Observational constraints (HII regions and PNe)
- Chemical evolution model

1. Observations

The observations

The idea: obtain at the same time (instrument, analysis technique, chemical element) the metallicity at two epochs

Observed 100 PNe + and 50 HII regions O

Planetary nebulae:

- LIMS progenitors
- $1 M_{sun} < M < 8 M_{sun} \rightarrow 0.3 Gyr < Age < 10 Gyr$
- do not modify (in most cases) the O, Ne, Ar, S abundances

•HII regions:

- ionized by O-B stars
- present-time ISM composition

PNe: constraining the past ISM abundances

- Is oxygen a good tracer of the past metallicity? Is it really unchanged, nor produced neither destroyed?
- Ne is not modified by LIMS nucleosynthesis--> Ne/O constant means-->
- no important oxygen modification

2. CEM

The metallicity gradient from HII regions and Planetary Nebulae

2. CEM

Which scenario is consistent with an almost

flat gradient and its slow evolution?

3. The 2 dimensional metallicity map

2-d metallicity distribution: Binned map Young stars (U etal. 2009) (22 stars) Oxygen map:present-time

Sept 18 2009

4. The population dependent HII region gradient

Summary and conclusions

- New MMT observations of a large sample of PNe and HII regions, together with literature data, confirmed:
 - the evolution of the average metallicity (0.1 dex in \approx 4 Gyr)
 - the slight flattening with time of the gradient of M33
- A scenario where the infall rate is constant with time and the SF is driven by a Schmidt law can explain this behaviour

Open questions

- Which is the origin of the off-centre in the metallicity distribution?
- Giant vs.'normal' HII regions: is their metallicity gradient really different?
- AGB stars vs. PNe: why their gradient is so different? Fe/H vs O/H or/and different age of the progenitors?

1. Observations: the time evolution of the metallicity gradient

The metallicity evolution:

radial distribution

HIIr sample (96 objs):

- Magrini at al.
 2007 (including all previous works, like Vilchez et al.
 1988, Kwitter & Aller 1981, etc.)
- 2. Rosolowsky & Simon 2008
- 3. This work
- PN sample (91 objs): 1. MSV09 ● Type I PNe (younger) ○ non Type I PNe

HII regions vs PNe

No changes in the O/H gradient

From MSV09, Magrini et al. 2007, Rosolowsky & Simon 2008

3. The 2 dimensional metallicity map

2-d metallicity distribution

The location of the metallicity peak does not affect the symmetry North-South and East-West of the gradient

3. The 2 dimensional metallicity map

2-d metallicity distribution

<u>The absence of a dominant gravitational source in the</u> <u>center and the interaction with M31 are possible</u> <u>reasons for the off-centered metallicity</u>

J. Conn and E. Athanassoula

A & B supergiants in NGC300 (Bresolin et al. 2009)

