HI MOTIVATION

- IS HI SOMETIMES OPTICALLY THICK?
 - HOW CAN WE TELL?
 - IF YES, BY HOW MUCH IS N(HI) UNDERESTIMATED?
 - WHERE AT?
- GALAXY-WIDE N(HI) DISTRIBUTION FUNCTION
- CAN WE ACTUALLY SEPARATE CNM vs. WNM?
- PAH-EMISSION AND DUST CORRELATION WITH HI

HI MOTIVATION

- IS HI SOMETIMES OPTICALLY THICK? YES
 - HOW CAN WE TELL? LINE PROFILE MODELING
 - IF YES, BY HOW MUCH IS N(HI) UNDERESTIMATED? UP TO 10X
 - WHERE AT? CLUMPS WITHIN HIGH BRIGHTNESS FILAMENTS
- GALAXY-WIDE N(HI) DISTRIBUTION FUNCTION
 - COMPLEX FORM : MODELED AS TURBULENT MEDIUM
- CAN WE ACTUALLY SEPARATE CNM vs. WNM?
 - PROMISING METHOD BASED ON MASKING PEAK TB IMAGE
- PAH-EMISSION AND DUST CORRELATION WITH HI
 - DUST/GAS RATIO DECLINES WITH RADIUS/DECREAS.MET.
 - REMARKABLE MORPHOLOGICAL AGREEMENT WITH PEAK TB

M33 HI DATABASE OVERVIEW

- VLA SYNTHESIS SURVEY
 - MAIN DISK (B-ARRAY, CS-ARRAY)
 - 6 POINTINGS: 48 HRS TOTAL
 - 5" (20 PC), 1.3 KM/S RESOLUTION
 - WIDE-FIELD (D-ARRAY ONLY)
 - TILED WITH 99 POINTINGS: 8 HRS
 - 2.9 x 3.8 deg (2.3 x 3.0 deg full sens.)
 - 45" (183 PC), 1.3 KM/S RESOLUTION
- GBT TOTAL POWER SURVEY
 - 5 x 5 DEG ON-THE-FLY MAP
 - 9.1' (2.2 KPC), 1 KM/S RESOLUTION
 - VLA+GBT PRODUCTS
 - JOINT DECONVOLUTION IN MIRIAD
 - MANY RESOLUTIONS AVAILABLE
 - ALL PERMUTATIONS OF 5, 10, 20, 60, 130" AND 2.6, 7.8, 12.8, 23 KM/S

1.8E9 MSUN WITH 20% OUTSIDE OF SF DISK (PUTMAN'09)
MAX R=22 KPC (@ 840 KPC)

N(HI) VLA+GBT 130" res.

CROSS-CUTS OVER PEAK TB FILAMENTARY MINIMA

- LOG (T_s) VS OPACITY-CORRECTED N(HI)
 - HIGH-OPACITY REGIONS ARE COOLER THAN SURROUNDINGS AND TYPICALLY LIE ON HI RIDGES

- OBSERVED N(HI) VS. RADIUS
 - NARROW RANGE OF N(HI) : NEAR LOG N(HI) = 21.2
 - DOWNTURN AT R = 7 KPC, WARPED DISK MODEL NEEDED BEYOND

- OPACITY-CORRECTED N(HI) VS. RADIUS
 - OPAQUE SIGHTLINES CONFINED TO MAIN DISK
 - SUBSTANTIAL INCREASE IN "DYNAMIC RANGE" OF GAS DISTR.

- DISTRIB. OF CORRECTED VS. OBSERVED N(HI)
 - OPAQUE SIGHTLINES ABOVE LOG N(HI) = 20.5
 - IOX LOCAL INCREASE, TYPICAL PEAK LOG N(HI) = 22

TEMPERATURE VS. RADIUS

- OPAQUE SIGHTLINES REPRESENTED IN COOL RIDGELINE
- COOL COMPONENT TEMP DECLINES SLIGHTLY WITH RAD.
 - 40 K at 4 kpc, 25 K at 7 kpc

TEMPERATURE VS. OPACITY-CORRECTED N(HI)

- BIMODAL DISTRIBUTION
 - DOMINATED BY HIGH T / LOW OPACITY SIGHTLINES
- HIGH N(HI) SIGHTLINES FORM A TAIL AT LOW T
 - SIGNALS A PHASE TRANSITION? PRE-MOLECULAR??

- DISTRIBUTION OF OPACITY-CORR. N(HI)
 - 81 PC (20") RESOLUTION RESOLVES HI SUPERCLOUDS
 - PREFERRED LOG N(HI) REGARDLESS OF CORRECTION
 - COMPLEX DISTRIBUTION WELL ABOVE NOISE FLOOR

- DISTRIBUTION OF OPACITY-CORR. N(HI)
 - 81 PC (20") RESOLUTION
 - MODELED BY LOG-NORMAL N(HI) DISTRIBUTION SUCH AS ASSOCIATED WITH A TURBULENT MEDIUM

- CNM vs. WNM -- THE PROBLEM OF ISOLATING THEM FROM EACH OTHER
 - CURRENT MODELING METHOD TREATS ALL SIGHTLINES INDEPENDENTLY
 - POORLY SUITED FOR STUDY OF DIFFUSE COMPONENT
 - CNM IS WELL TRACED BY HIGH-BRIGHTNESS NETWORK SEEN IN PEAK TB IMAGE
 - PROPOSED METHOD:
 - MASK HIGH-PASS FILTERED PEAK TB IMAGE
 - PIXELS NOT IN MASK SAMPLE THE DIFFUSE WNM
 - ITERATIVE INTERPOLATION OF THESE SAMPLE POINTS TO ESTIMATE WNM CONTRIBUTION TO DATACUBE

• OUTPUTS:

- CNM COVERING FRACTION
- CNM FRACTIONAL FLUX

CNM COVERING FRACTION VS. RADIUS (PEAK TB-MASKED)

COVERING FRAC. IS ABOUT 25% THROUGHOUT MAIN DISK

DROPS PRECIPITOUSLY AT R = 7 KPC : RELATED TO SF EDGE?

CNM FRACTIONAL FLUX VS. RADIUS (PROVISIONAL!)

 SMOOTH DECLINE WITH RADIUS 0.65 -> 0.4 FROM CENTER TO EDGE OF MAIN DISK

PEAK TB - PAH CORRELATION

- MORPHOLOGICALLY BETTER MATCH THAN WITH N(HI)
- SUGGESTS PAH ORIGINATES IN CNM (MORE THAN WNM)
- RADIAL DECLINE IN DUST/GAS RATIO

- RADIAL DECREASE IN DUST/GAS DUE TO METALLICITY?
 - M33 has small metallicity gradient but with significant local deviations
 - SUGGESTS THAT SOME SCATTER IN D/G IS REAL

COLOR INDICATES INCREASING RADIUS (BLACK, DARK GREEN, LIGHT GREEN, CYAN, BLUE, MAGENTA)

OPEN QUESTIONS - M33 HI

- DUST/GAS RATIO
 - SPITZER/HERSCHEL SED FIT, VLA TO MEASURE LOCALLY
- CONTRIBUTION OF PDRs
 - LOCALLY IMPORTANT?
- STAR FORMATION LAW W.R.T. HI
 - SCHIMDT LAW... BEST WITH MOL. GAS
 - USING ONLY CNM DOES HI CORREL. IMPROVE?
- HI-CO TRANSITION (DETAILS VS. PREDICTION)
- UPDATED WARPED-DISK MODEL, ROTATION CURVE
- DETAILS OF HVC POPULATION