in M 33

Generic slides

Star formatic Motivations The data Radial study Local study Conclusions

Questions

Radial and local Kennicutt-Schmidt laws

Simon Verley in collaboration with E. Corbelli, C. Giovanardi, L. K. Hunt

Universidad de Granada

Spain

Osservatorio Astrofisico di Arcetri Italy

◆□▶ ◆□▶ ★∃▶ ★∃▶ = ● ● ●

September 17^{th} , 2009

Dust and star formation in M 33

Generic slides

Star formatic Motivations The data Radial study Local study Conclusions

Questions

200

Ξ

Dust and star formation in M 33

24 μ m: high diffuse fraction powered by evolved stars

The Kennicutt-Schmidt law of star formation Schmidt 1959, ApJ, 129, 243; Kennicutt 1998, ApJ, 498, 541

Generic slides

Star formation Motivations The data Radial study Local study Conclusions

Questions

 $\Sigma_{\rm SFR} \propto \Sigma_{\rm gas}^n$?

uestions?

- SFR: $H\alpha$, UV, bolometric?
- Gas: molecular (H₂), atomic (H_I), total (H₂ + H_I)?
- At which spatial resolution does it hold? Radially? Locally?
- Does the SFR correlates better with $\Sigma_{\rm gas}$ or $\rho_{\rm gas}$?
- How important is the fitting method in determining n when dispersion is high?

Multiwavelength data

Resolution 45" given by the CO map

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のの⊙

Atomic, molecular, and total gas in M 33 Verley et al. 2009, A&A, 493, 453

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ● ○ ○ ○ ○

Infrared, ultraviolet, and optical radial profiles Verley et al. 2009, A&A, 493, 453

Multiwavelength SFR across the disk in M 33 Verley et al. 2009, A&A, 493, 453

The radial Kennicutt-Schmidt law in M 33

in M 33 Simon Verley

Star formatic Motivations The data **Radial study** Local study

Questions

 $\begin{array}{lll} & \mbox{Kennicutt-Schmidt indexes:} \\ {\rm H}\alpha: & \mbox{$n_{\rm H_2}=1.3\pm0.2$} & \mbox{$n_{\rm H_{tot}}=3.6\pm0.3$} \\ {\rm FUV:} & \mbox{$n_{\rm H_2}=1.1\pm0.1$} & \mbox{$n_{\rm H_{tot}}=2.9\pm0.2$} \end{array}$

▲ロト ▲暦 ト ▲臣 ト ▲臣 - のへで

The local Kennicutt-Schmidt law in M 33 Resolution: 180 pc

Generic slides

Star formations Motivations The data Radial study Local study Conclusions

Questions

The local Kennicutt-Schmidt law in M 33 First fitting method

The local Kennicutt-Schmidt law in M 33 First fitting method

The local Kennicutt-Schmidt law in M 33 First fitting method

Star formation in M 33

Simon Verley

Generic slides

Star formatic Motivations The data Radial study Local study Conclusions

Questions

Results:

- \blacksquare $n_{
 m H_2} \sim 1.1 1.6$, $n_{
 m H_{tot}} \sim 2 4$
- *n* higher for the H α with respect to FUV or bolometric
- n marginally increases as the resolution gets coarser
- Initial r increases as the resolution gets coarser (0.2 to 0.6)

◆□▶ ◆□▶ ★∃▶ ★∃▶ = ● ● ●

Cons:

- CO below detection threshold included
- No correlation coefficient after iterations

The local Kennicutt-Schmidt law in M 33 Second fitting method

in M 33

Generic slide

Star formation Motivations The data Radial study Local study Conclusions

Questions

Second fitting method

- Best spatial resolution: 180 pc
- FCRAO CO flux above 2σ noise
- Errors in gas surface density, FUV SFR density as well as extinction corrections
- $n_{\rm H_2} = 2.22 \pm 0.07$, r = 0.42

• $n_{
m H_{tot}} = 2.59 \pm 0.05$, r = 0.43

◆□▶ ◆□▶ ★∃▶ ★∃▶ = ● ● ●

Improving the correlation between gas and SFR

Correlation between dust optical depth and SFR

-4.5-3.5-4 $\log \tau_{160}$

 $\log \Sigma_{\rm SFR} - \log \tau_{160}; \ n = 1.13 \pm 0.02, \ r = 0.81$

${\rm H}\alpha$ as a SFR tracer on a local scale

H α : Incompleteness of IMF for low luminosity regions

Conclusions

Star formation in M 33

Simon Verley

Generic slides

Star formatio Motivations The data Radial study Local study Conclusions

Questions

Radially and locally:

Hα KS indices always higher than FUV and bolometric
 Incompleteness of IMF for low luminosity regions

Radially, rings of 240 pc:

- $n_{
 m H_2} = 1.1 \pm 0.1$; depletion time ${\sim}1$ Gyr
- $n_{
 m H_{tot}} = 2.9 \pm 0.2$; depletion time ${\sim}0.5$ to 10 Gyr

◆□▶ ◆□▶ ★∃▶ ★∃▶ = ● ● ●

Conclusions

Star formation in M 33

Simon Verley

Generic slides

Star formation Motivations The data Radial study Local study Conclusions

Questions

Locally, from 180 to 1440 pc:

- high dispersion, fitting methods
- recursive fit $n_{\rm H_2} = 1.1$
- \blacksquare bivariate regression $\textit{n}_{\rm H_2} = 2.22 \pm 0.07$, r = 0.42
- bivariate regression $n_{
 m H_{tot}} = 2.64 \pm 0.07$, r = 0.43

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のの⊙

- $\log \Sigma_{\rm SFR} \log \rho_{\rm ISM}$: $n = 1.07 \pm 0.02$, r = 0.71
- log $\Sigma_{\rm SFR}$ log τ_{160} : $n = 1.13 \pm 0.02$, r = 0.81

Open questions

Generic slides

Star formatio Motivations The data Radial study Local study Conclusions

Questions

- Why is there such a high dispersion in the KS law in M 33 with respect to M 51?
- What are the better scales to test the KS law?
- Is the gas density the best quantity to be involved in the KS law?

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のの⊙