The Goddard Center for Astrobiology http://astrobiology.gsfc.nasa.gov

...Understanding how life emerges from cosmic and planetary precursors

A Connection Between Interstellar and Solar System Isotopic Fractionation?

Steven Charnley NASA Goddard Space Flight Center

Fractionation of isotopes in space: from the solar system to galaxies Arcetri Observatory October 12 2016

ISM-Solar System Isotopic Connection?

Primitive material = comets, asteroids, meteorites, IDPs Isotopic fractionation a remnant of cold interstellar chemistry ?

OVERVIEW

- Isotopic evidence for a comet-ISM connection
- Interstellar chemistry in comets
- Interstellar precursors of meteoritic organics

Interstellar ices and dust in protoplanetary disks

Crovisier et al. (1997)

D/H IN THE SOLAR SYSTEM

Cometary water

Adapted from Bockelee-Morvan et al. (2015)

D/H: COMETS vs. ISM

Table 2 Deuterium fractionation in comets and the interstellar medium

Isotopologue Ratio ^a	Cometary Ratio	Comet	Interstellar Ratio ^b	Refs. ^b
	Kuto		Kuto	
HDO/H ₂ O	0.0006	Several ^c	0.0004-0.01	1–3
DCN/HCN	0.002	Hale-Bopp	0.01-0.1	4
				_
HDCO/H ₂ CO	< 0.1	Hale-Bopp	0.07-0.3	6
NH2D/NH3	< 0.1	Hale-Bopp	0.01-0.08	6
CH ₃ OD/CH ₃ OH	< 0.03	Hale-Bopp	0.01-0.06	6
CH2DOH/CH3OH	< 0.02	Hale-Bopp	0.04	6
HDS/H ₂ S	< 0.2	Hale-Bopp	0.01-0.1	6
CH ₃ D/CH ₄	< 0.04	C/2001 Q4	< 0.06	7

Charnley & Rodgers (2008) See also Bockelee-Morvan et al. (2015)

Isotopes of Nitrogen and Carbon in Comets: CN

Adapted from Manfroid et al. 2009

Nebular vs. Interstellar?

Levison et al. (2010): ~90% of Oort Cloud comets captured from stars in Sun's birth cluster?

Ion-Molecule Fractionation Chemistry

Dense, starless/prestellar cores (n~10⁵ cm⁻³, T ~10K, CO depletion)

e.g. Barnard 68

(Lada et al. 2004)

 $\stackrel{15}{\sim} \mathrm{N} + \stackrel{14}{\sim} \mathrm{N}_{2}\mathrm{H}^{+} \rightleftharpoons \stackrel{14}{\sim} \mathrm{N} + \stackrel{15}{\sim} \mathrm{N}^{14}\mathrm{N}\mathrm{H}^{+}$ $\rightleftharpoons \stackrel{14}{\sim} \mathrm{N} + \stackrel{14}{\sim} \mathrm{N}^{15}\mathrm{N}\mathrm{H}^{+}$

$$^{15}N + HC^{14}NH^+ \rightleftharpoons ^{14}N + HC^{15}NH^+$$

$$^{15}N^+ + ^{14}N_2 \rightleftharpoons ^{14}N^+ + ^{14}N^{15}N$$

$$^{15}N + C^{14}NC^+ \rightleftharpoons ^{14}N + C^{15}NC^+$$

Terzieva & Herbst (2000)

$$H_3^+ + HD \rightleftharpoons H_2D^+ + H_2 H_2D^+ + HD \rightleftharpoons D_2H^+ + H_2 D_2H^+ + HD \rightleftharpoons D_3^+ + H_2$$

Roberts et al. (2003)

¹⁵N Fractionation in Meteorites

PROTOSOLAR ¹⁴N/¹⁵N~440 (TERRESTRIAL ¹⁴N/¹⁵N~270)

Meteorites & IDPs:

`hotspots':

¹⁴N/¹⁵N~50-170 + D-rich

D-rich + ¹⁵N-poor

¹⁵N-rich + D-poor

Present in the Insoluble and Soluble Organic Material

Problems: 1) origin of the fractionation

2) nature of the carrier(s):

- nitrile or amine?
- aliphatic or aromatic?

Interstellar Origin for Cometary ¹⁴N/¹⁵N Ratios ?

Necessary if ~90% of Oort Cloud comets from extrasolar systems (Levison et al. 2010) and/or outer Solar nebula shielded from cosmic rays (Cleeves et al. 2014).

Wirstroem et al. (2012)

¹⁴N/¹⁵N Ratios in Dark Clouds circa 2010

Source	Туре	NH_3	N_2H^+	HCN	HNC	Reference
L1544	dark core		446±71	261	>27	1,2,3
				69-154		3
L1498	dark core			>813	> 90	4,3
				>75		3
L1521E	dark core			151±16		4
L1521F	dark core			>51	24-31	3,3
B1	protostar	334 ± 50				5
NGC 1333	protostar	344±173				5
		350-850				6
Cha-MMS1	protostar				135	7

Table 1: INTERSTELLLAR NITROGEN ISOTOPE RATIOS

(1) Bizzocchi et al. (2010) (2) Hily-Blant et al. (2010) (3) This work (4) Ikeda et al. (2002) (5) Lis et al. (2010) (6) Gerin et al. (2009) (7) Tennekes et al. (2006)

Observed ¹⁴N/¹⁵N Ratios in Molecular Clouds

Source	Туре	NH ₃	$N_2H^{+\S}$	HCN	HNC	CN	Reference
L1544	dark core	>700	1000 ± 200	69-154	>27	500 ± 75	4,1,3,3,9
			1000 ± 200	140-360			1,2
L1498	dark core	619±100		>75	>90	$500{\pm}75$	3,3,3,9
				>813			5
L1521E	dark core			151±16			5
L1521F	dark core	539±118		>51	24-31		3,3,3
L1262-core	dark core	356±107	>450				3,3
			>450				3
L183	dark core	$530\pm^{570}_{180}$		140-250			4,2
NGC 1333-DCO ⁺	dark core	$360\pm^{260}_{110}$					4
		110					
NGC 1333-4A	Class 0 protostar	$344{\pm}173$					6
		>270					4
B1	Class 0 protostar	300	>600	165	75	240	10,10,10,10,9
		$334{\pm}50$	400				6,10
L1689N	Class 0 protostar	$810\pm^{600}_{250}$					4
Cha-MMS1	Class 0 protostar				135		7
IRAS 16293A	Class 0 protostar			$163{\pm}20$	242 ± 32		13
R Cr A IRS7B	Class 0 protostar			287 ± 36	$259{\pm}34$		13
OMC-3 MMS6	Class 0 protostar			366 ± 86	$460{\pm}65$		13
L1262-YSO	Class I protostar	$453{\pm}247$	>430				3,3
			>430				3
Several	Massive starless cores		65-1100			330-400	15,15
			180-1034#				15
Orion-KL Hot Core	Massive protostar	$170\pm^{140}_{80}$					16
Several	Massive protostars		190-1000			190-450	15,15
			180-1300				15
Several	Ultracompact HII regions		320-900			230-430	15,15
			350-700				15
Comets	JFC & Oort Cloud	127 [‡]		$139{\pm}26$		135-170†	11,12,8

TABLE 5Interstellar Nitrogen Isotope Ratios

References: (1) Bizzocchi et al. (2013); (2) Hily-Blant et al. (2013a); (3) Milam & Charnley (2012), Adande et al. (2016); (4) Gerin et al. (2009); (5) Ikeda et al. (2002); (6) Lis et al. (2010); (7) Tennekes et al. (2006); (8) Hutsemékers et al. (2008); (9) Hily-Blant et al. (2013b); (10) Daniel et al. (2013), lower limit is for the 15 NNH⁺ isotopologue ; (11) Rousselot et al. (2014); (12) Bockelée-Morvan et al. (2008); (13) Wampfler et al. (2014); (15) Fontani et al. (2015) ; (16) Hermsen et al. (1986)

[§] In each N_2H^+ entry the uppermost value is for the ¹⁵NNH⁺ isotopologue. # Larger value is a lower limit. [†] This range can be taken as a surrogate for the HCN ratio, however in comets there may be additional sources of CN (see Mumma & Charnley 2011). Only 2 measurements have been made for in HCN itself, in OC comets Hale-Bopp and 17P/Holmes. [‡] 'Average' based on optical observations of NH₃ daughter molecule NH₂ in an ensemble of comets.

An ion-molecule origin for ¹⁴N/¹⁵N ratios in comets?

- ¹⁴N/¹⁵N nitrile ratios most enriched as observed in ISM and comets
- Low ¹⁵N enrichment/depletion in interstellar NH₃ possibly a time-dependent effect
- Depletion of ¹⁵N in N₂H⁺ a problem models only predict ISM enrichment
- Observed ¹⁵N enrichment in *cometary* NH₃ not reproduced
- Roueff et al. (2015) now calculate barriers for the key processes:

 $\stackrel{15}{\sim} \mathrm{N} + \stackrel{14}{\sim} \mathrm{N}_{2}\mathrm{H}^{+} \rightleftharpoons \stackrel{14}{\sim} \mathrm{N} + \stackrel{15}{\sim} \mathrm{N}^{14}\mathrm{N}\mathrm{H}^{+}$ $\rightleftharpoons \stackrel{14}{\sim} \mathrm{N} + \stackrel{14}{\sim} \mathrm{N}^{15}\mathrm{N}\mathrm{H}^{+}$

 $^{15}N + HC^{14}NH^+ \rightleftharpoons ^{14}N + HC^{15}NH^+$

- Isotope-selective photodissociation of N₂ inefficient in dark cores (Heays et al. 2014);
 probably also in nebula?
- Models need to be re-evaluated (Wirstroem & Charnley 2016)

Interstellar and Cometary Ices

Molecule	Comets	Quiescent dense clouds	Low-mass protostars	Massive protostars
СО	0.4–30	9–36	0-100	3-50
CO ₂	2-30	15-44	2–68 ^b	4–23
CH ₄	0.4–1.6	<3	2-8	0.4–1.9
CH ₃ OH	0.2-7	5-12	1–30	5-30
H ₂ CO	0.11-1		~6	1–3
НСООН	0.06-0.14	~2	1–9	3-7
NH ₃	0.2-1.4	<6–9	2-15	5-15
CHNCO	0.02-0.1	<2	<0.9	0.3-6
H ₂ S	0.12-1.4	<1-4		< 0.3-1
OCS	0.1-0.4	<0.2		0.04-0.2

Table 3 Representative ranges of molecular abundances in cometary and interstellar ices^a

^aAbundances are expressed in percent relative to water. Relative abundances for native ices in the nucleus are taken to be the same as relative production rates for primary volatiles observed in cometary comae (**Table 4**). Interstellar entries are taken from Bergin et al. (2005), Boogert et al. (1996, 2004, 2008), Bottinelli et al. (2010), Dartois (2005), Dartois et al. (1999), Gerakines et al. (1999), Gibb et al. (2000, 2004), Knez et al. (2005), Oberg et al. (2008), Palumbo et al. (1997), Pontoppidan et al. (2008), Schutte et al. (1996), Smith (1991), van Broekhuizen et al. (2004).

^bFor most sources, the range is 20-30% (Pontoppidan et al. 2008)

^cAssumes isocyanic acid ice is directly connected to the presence of OCN⁻, the proposed carrier of the 4.62-μm absorption feature (e.g., Pontoppidan et al. 2003, van Broekhuizen et al. 2004).

From Mumma & Charnley 2011

Molecules in the Coma

Recent observations indicate that

$(CH_2OH)_2$, NH_2CHO , HNCO, CH_3CHO , HCOOH, CH_2OHCHO , CH_3CH_2OH are probably common in comets.

Table 3. Abundances relative to water

Molecule	Abundance (%)			
	C/1995 O1 ^a	C/2012 F6	C/2013 R1	
	(Hale-Bopp)	(Lemmon)	(Lovejoy)	
HCN	0.25	0.14	0.16	
СО	23	4.0^{b}	7.2^{c}	
H_2CO	1.1	0.7^{c}	0.7^{c}	
CH ₃ OH	2.4	1.6	2.6	
HCOOH	0.09	< 0.07	0.12	
$(CH_2OH)_2$	0.25	0.24	0.35	
HNCO	0.10	0.025^{c}	0.021 ^c	
NH ₂ CHO	0.02	0.016	0.021	
HCOOCH ₃	0.08	< 0.16	< 0.20	
CH ₃ CHO	0.025	< 0.07	0.10	
CH ₂ OHCHO	< 0.04	< 0.08	< 0.07	

Notes. ^(a) Bockelée-Morvan et al. (2000); Crovisier et al. (2004a,b). ^(b)Paganini et al. (2014).^(c) Biver et al. *in preparation*.

Biver et al. (2014, 2015)

Atom Addition Reactions on Cold Dust

ISM only

Charnley & Rodgers (2008)

Isotopes: ¹³C Labelling

Cold gas: $^{13}C^+$ + ^{12}CO \longrightarrow $^{12}C^+$ + 13CO

Langer et al. (1984)

Dust formation and post-evaporation gas formation

Posterior Isotopic Labelling

Molecule	Surface formation mechanism	Predicted fractionation ^a	Reference
CH ₃ OH	$CO \xrightarrow{H} HCO \xrightarrow{H} H_2CO \xrightarrow{2H} CH_3OH$	$\left[\frac{\text{CH}_3\text{OH}}{^{13}\text{CH}_3\text{OH}}\right] = R$	(1)
НСООН	$\text{CO} \xrightarrow{\text{H}} \text{HCO} \xrightarrow{\text{O}} \text{HCOO} \xrightarrow{\text{H}} \text{HCOOH}$	$\left[\frac{\text{HCOOH}}{\text{H}^{13}\text{COOH}}\right] = R$	(2)
HNCO	$CO \xrightarrow{H} HCO \xrightarrow{N} HNCO$	$\left[\frac{\mathrm{HNCO}}{\mathrm{HN}^{13}\mathrm{CO}}\right] = R$	(3)
NH ₂ CHO	$HNCO \xrightarrow{H} NH_2CO \xrightarrow{H} NH_2CHO$	$\left[\frac{\mathrm{NH}_{2}\mathrm{CHO}}{\mathrm{NH}_{2}^{13}\mathrm{CHO}}\right] = R$	(2), (3)
CH ₂ CO	$CO \xrightarrow{H} HCO \xrightarrow{C} HCCO \xrightarrow{H} CH_2CO$	$\left[\frac{\mathrm{CH}_2\mathrm{CO}}{\mathrm{CH}_2^{13}\mathrm{CO}}\right] = R$	(3)
		$\left[\frac{\text{CH}_2\text{CO}}{^{13}\text{CH}_2\text{CO}}\right] > R$	
CH ₃ CHO	$\mathrm{CH}_2\mathrm{CO} \overset{\mathrm{H}}{\longrightarrow} \mathrm{CH}_3\mathrm{CO} \overset{\mathrm{H}}{\longrightarrow} \mathrm{CH}_3\mathrm{CHO}$	$\left[\frac{\text{CH}_3\text{CHO}}{\text{CH}_3^{13}\text{CHO}}\right] = R$	(3)
		$\left[\frac{\text{CH}_{3}\text{CHO}}{^{13}\text{CH}_{3}\text{CHO}}\right] > R$	
CH ₃ CH ₂ OH	$\mathrm{CH_3CHO} \overset{\mathrm{H}}{\longrightarrow} \mathrm{CH_3CH_2O} \overset{\mathrm{H}}{\longrightarrow} \mathrm{CH_3CH_2OH}$	$\left[\frac{\text{CH}_3\text{CH}_2\text{OH}}{\text{CH}_3^{13}\text{CH}_2\text{OH}}\right] = R$	(3)
		$\left[\frac{\text{CH}_3\text{CH}_2\text{OH}}{^{13}\text{CH}_3\text{CH}_2\text{OH}}\right] > R$	
OCS	$CS \xrightarrow{O} OCS$	$\left[\frac{\mathrm{OCS}}{\mathrm{O}^{13}\mathrm{CS}}\right] > R$	(4)
	$CO \xrightarrow{S} OCS$	$\left[\frac{\mathrm{OCS}}{\mathrm{O}^{13}\mathrm{CS}}\right] = R$	(2)
H ₂ CS, CH ₃ SH	$CS \xrightarrow{H} HCS \xrightarrow{H} H_2CS \xrightarrow{2H} CH_3SH$	$\left[\frac{\mathrm{H_nCS}}{\mathrm{H_n^{13}CS}}\right] > R$	(5)
VyCN, EtCN	$\text{HC}_3\text{N} \xrightarrow{\text{2H}} \text{CH}_2\text{CHCN} \xrightarrow{\text{2H}} \text{CH}_3\text{CH}_2\text{CN}$	$\left[\frac{\text{CH}_{3}\text{CH}_{2}\text{CN}}{\text{CH}_{3}^{13}\text{CH}_{2}\text{CN}}\right] > R$	(6)
		$\left[\frac{\text{CH}_2\text{CHCN}}{\text{I}^3\text{CH}_2\text{CHCN}}\right] = \left[\frac{\text{CH}_3\text{CH}_2\text{CN}}{\text{CH}_3^{13}\text{CH}_2\text{CN}}\right]$	

Table 1. Predicted ${}^{12}C/{}^{13}C$ fractionation patterns of hot core organics.

Notes. ${}^{a}R = [CO_2/{}^{13}CO_2]_{ice}$.

References: (1) Tielens & Allamandola (1987); (2) Tielens & Hagen (1982); (3) Charnley (1997a); (4) Palumbo et al. (1997); (5) Caselli, Hasegawa & Herbst (1993); (6) Charnley et al. (1992).

¹²C/¹³C Observed in CO, CO₂, H₂CO and CH₃OH

Boogert et al. (2000, 2002): CO & CO₂ ice with ISO

Wirstroem et al. (2011) CH_3OH Wirstroem et al. (in prep.): H_2CO

D and **C** isotopic fractionation in the Murchison meteorite

Amino Acids in Meteorite Extracts

- 1 D-Aspartic Acid
- 2 L-Aspartic Acid
- 3 L-Glutamic Acid
- 4 D-Glutamic Acid
- 5 D,L-Serine
- 6 Glycine
- **7** β-Alanine
- 8 γ-Amino-*n*-butyric Acid (γ-ABA)
- 9 D,L- β -Aminoisobutyric Acid (β -AIB)
- 10 D-Alanine
- 11 L-Alanine
- **12** D,L- β -Amino-*n*-butyric Acid (β -ABA)
- 13 α-Aminoisobutyric Acid (AIB)
- 14 D,L- α -Amino-*n*-butyric Acid (α -ABA)
- 15 D,L-Isovaline
- 16 L-Valine
- 17 D-Valine
- X: unknown

Ehrenfreund et al. (2001)

Interstellar Precursors of Meteoritic Organics?

Aqueous phase reactions with H₂O, NH₃, HCN, CO, CO₂, H₂CO, CH₃CHO, CH₃COCH₃, CH₂CHCN

Strecker synthesis:

 R_2

 $NH_2-CH_2-CH_2-C\equiv N \xrightarrow{H_2O} H_2N-CH_2-CH_2-COOH$

Pizzarello et al. (2006)

Meteoritics & Planetary Science 47, Nr 9, 1517–1536 (2012) doi: 10.1111/j.1945-5100.2012.01415.x

Compound-specific carbon, nitrogen, and hydrogen isotopic ratios for amino acids in CM and CR chondrites and their use in evaluating potential formation pathways

Jamie E. ELSILA^{1*}, Steven B. CHARNLEY¹, Aaron S. BURTON², Daniel P. GLAVIN¹, and Jason P. DWORKIN¹

¹NASA Goddard Space Flight Center and the Goddard Center for Astrobiology, Greenbelt, Maryland 20771, USA ²NASA Postdoctoral Program Administered by Oak Ridge Associated Universities, Greenbelt, Maryland 20771, USA ^{*}Corresponding author. E-mail: jamie.elsila@nasa.gov

(Received 06 June 2012; revision accepted 08 August 2012)

Abstract–Stable hydrogen, carbon, and nitrogen isotopic ratios (δD , $\delta^{13}C$, and $\delta^{15}N$) of organic compounds can reveal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may indicate the most likely of these pathways. We have applied gas chromatography with mass

Using D, ¹⁵N and ¹³C to Probe Amino Acid Origin

	Predictions			
Mechanism	Amine	$\delta^{13}C$	$\delta^{15}N$	δD
I. Cyanohydrin (Strecker) $R-C-R' + HC \equiv N + NH_3 \rightarrow R-C-C \equiv N \rightarrow R-C-C-OH$ NH_2 NH_2	α	Lower enrichment in longer chains	Enriched	Higher enrichment with more H atoms
II. Michael addition $RHC=CH-C\equiv N + NH_3 \rightarrow RHC-CH_2-C\equiv N \rightarrow RHC-CH_2-C-OH$ NH_2 NH_2	Mostly β (no α)	Lower enrichment, independent of length	Enriched	Less enriched than Strecker
III. CO ₂ addition $O=C=O + R-NH_2 \rightarrow R-C-OH$ NH_2	Any	Lower enrichment in longer chains	Potentially higher than other mechanisms	Enriched
IV. Reductive amination P = P $R - C - C - OH + NH_3 \rightarrow R - CH - C - OH$ NH_2	Any mono-alkyl	Higher enrichment, independent of length	Enriched	Higher enrichment with more H atoms

Table 6. Proposed formation mechanisms and predictions.

Blue/bold represents material from ¹³C-enriched CO; green represents material derived from the "carbon isotope pool." Ammonia-derived nitrogen is shown in red/italics.

ISM-Solar System Isotopic Connection?

- For comet composition, good correlation with known interstellar molecules (but CH₃OH low etc.)
- Ice CHO compositions both consistent with grain chemistry at ~ 10 K
- Isotopes suggest comets contain volatile materials with different thermal histories: ~25-35K (D/H in water); ~10K (¹⁵N in HCN, CN and ammonia)
- Apparent retention of `interstellar' chemical characteristics variable mixing and re-processing in the nebula (81P/Wild 2 vs. Hale Bopp vs. 67P)
- Interstellar isotopic measurements may provide insight into the starting materials for a prebiotic chemistry initiated by comets and asteroids/meteorites

ACKNOWLEDGEMENTS

Eva Wirstroem, Gilles Adande, Stefanie Milam & Jamie Elsila-Cook, Jose Aponte, Michael Mumma

END