Molecular isotopic ratios in the low-mass protostar L1527

Kento Yoshida (Univ. of Tokyo/RIKEN), Nami Sakai (RIKEN), Yoshimasa Watanabe, Satoshi Yamamoto (U. Tokyo), Shuro Takano (Nihon U.), Bertrand Lefloch, Cecilia Ceccarelli (IPAG/CNRS), and ASAI members

Question

How do the isotope ratios evolve along star formation?

 \rightarrow spatial distribution of molecular isotopic ratios

(1000 au \rightarrow 100 au scale)

Topics

- ¹³C species with single-dish telescopes
- Deuterated species with ALMA

Abundance anomaly of ¹³C species

1. Dilution of ¹³C species

- $[CCS]/[^{13}CCS] = 230 \pm 130 (3\sigma; TMC-1) [1]$
- [CCH]/[¹³CCH] > 250 (TMC-1) [2]
- [CCH]/[¹³CCH] > 135 (L1527) [2]
- c.f. ¹²C/¹³C elemental ratio ~ 60-70 [3,4]
- 2. Nonequivalence of ¹³C species
 - $[^{13}CCS] : [C^{13}CS] = 1.0 : 4.2 (TMC-1)[1]$
 - $[^{13}CCH] : [C^{13}CH] = 1.0 : 1.6 (TMC-1)[2]$
- [1] Sakai et al. 2007
 [2] Sakai et al. 2010
 [3] Lucas et al. 1998
 [4] Milam et al. 2005
- $[^{13}CCH] : [C^{13}CH] = 1.0 : 1.6 (L1527) [2]$

- Closed shell molecule
- Ubiquitously distributed in ISM
- \rightarrow studied in low-mass protostar L1527

Line surveys toward L1527

- L1527: Class 0 low-mass protostar
 - Rich Carbon-chain molecules

- Line surveys with NRO 45 m & IRAM 30 m (ASAI)
 - NRO 45 m: 3 mm band, IRAM 30 m: 1.3-3 mm bands (PI: S. Takano) (PI: B. Lefloch & R. Bachiller)

Detection of c-C₃H₂ and its ¹³C species

Numbers of detected lines

¹²C/¹³C ratios of c-C₃H₂ species

¹²C/¹³C ratios of c-C₃H₂ species

- $c-C_3H_2$ is produced from C⁺
 - ¹³C species are produced from ¹³C⁺

$$^{13}C^{+} + ^{12}CO \xrightarrow{\phantom{}} ^{12}C^{+} + ^{13}CO + 35 \text{ K}$$

$$(\text{Langer et al. 1984})$$

$$\downarrow$$

$$^{13}C^{+} \text{ is deficient in molecular clouds}$$

Nonequivalence of ¹³C species

(off-axis species)

(on-axis species)

(Expected: 2.0)

 \rightarrow Two species are nonequivalent.

Implication on the formation pathway The possible precursor $c-C_3H_3^+$ has three equivalent carbon atoms. \longrightarrow Other reactions have to be considered: e.g., $C_2H_2+CH\rightarrow c-C_3H_2+H$. (Yoshida et al. 2015, ApJ, 807, 66)

Summary (1)

- ¹³C species of $c-C_3H_2$ (Single dish telescopes)
 - Two anomalies of ¹³C species are confirmed at ~2000 au scale
 - Dilution of ¹³C
 - Nonequivalence of ¹³C species
 - High resolution observation with ALMA is needed.

Next Topic: Deuterated species observed with ALMA

- D₂CO/H₂CO and CCD/CCH
- Spatial resolution ~ 200 au

 \rightarrow How the D/H ratios change from the envelope to the protostar

Observation of H₂CO & D₂CO with ALMA

	$D_2CO4_{04}-3_{03}$	$D_2CO4_{23}-3_{22}$	H ₂ CO 5 ₁₅ -4 ₁₄
Eu (cm ⁻¹)	19.4	34.5	30.4
	Cycle 1 (Archival)	Cycle 2 (PI: N. Sakai)	Cycle 0 (PI: N. Sakai)
Baseline	18-780 m	15-350 m	21-400 m
Ang. res., P.A.	0.58″ × 0.47″, -64°	1.5"×1.1", 61°	0.69'' imes 0.56'', 28°
Largest ang. size	\sim 9" (1200 au)	~11″ (1500 au)	~5″ (700 au)
	1000 au 0.06 - 0.04 - 0.02 FOV		

Derive temperature and column density 9/16

Column density & temperature of D₂CO

Protostar position: No enhancement in N& T of D₂CO

Velocity structure of D₂CO PV diagrams along the envelope direction

 D_2CO : No high velocity component D_2CO is deficient within ~250 au

Column density & temperature of D₂CO

- High temperature at r~500 au from the protostar
 - shock by the outflow?

D₂CO/H₂CO ratio

c.f. Single dish observations of D_2CO/H_2CO

ASAI observation	0.25(11)	(H_2CO : derived from $H_2C^{18}O$)
Parise et al. (2006)	$0.44^{+0.60}_{-0.29}$	
Roberts & Millar (2007)	0.016(5)	(H ₂ CO: derived from H ₂ ¹³ CO)

Summary (2)

- Spatial distributions of H₂CO and D₂CO with ALMA
 - H₂CO: Central Concentration
 - D₂CO: No enhancement toward the protostar position
 - \rightarrow D₂CO/H₂CO decreases from the envelope to the center

New supply of H₂CO

- » Gas-phase formation of H_2CO
- » Evaporation from layered ices?

Observation of CCH & CCD with ALMA

	CCD <i>N</i> =3-2, <i>J</i> =5/2-3/2	CCH <i>N</i> =3-2, <i>J</i> =5/2-3/2
	ALMA Cycle 2 (Band 6)	ALMA Cycle 0 (Band 6)
Baseline	15-350 m	21-400 m
Ang. res.	$1.7'' \times 1.2''$, P.A. = 63°	0.94″×0.60″, P.A. = −41°
Largest ang. size	~11″	~7″

15/16

Summary

- ¹³C species of $c-C_3H_2$ (Single dish telescopes)
 - Two anomalies of ¹³C species are confirmed at ~2000 au scale
 - Dilution of ¹³C
 - Nonequivalence of ¹³C species
 - High resolution observation with ALMA is needed.
- Spatial distributions of deuterated species with ALMA
 - Deuterated species become deficient toward the inner envelope ($D_2CO \& CCD$)
 - D/H ratios become lower at the protostar position
 - Regenaration of the normal species